• Title/Summary/Keyword: Embankment height

Search Result 120, Processing Time 0.026 seconds

Investigation of Settlement of Concrete Track on High-Speed Railway Due to Groundwater Variation (지하수위 변동에 따른 고속철도 콘크리트궤도의 침하 영향 검토)

  • Lee, Hyunjung;Choi, Yeong-Tae;Lee, Ilwha;Lee, Minsoo;Lee, TaeGyu
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.248-256
    • /
    • 2017
  • Groundwater drawdown was pointed out as one of the causes of induced settlement on high speed railways, especially concrete track. In this study, the effect of groundwater variation on settlement was evaluated through a comparison of field measurements with numerical analysis results. A trial and error method, i.e., repeated numerical analyses by changing material properties, was used to calibrate the model. The model was applied to investigate the effect of groundwater drawdown, thickness of soft layer, and embankment height on residual settlement after concrete track completion. A soft layer thicker than 4m would result in more than 30mm of settlement; a detailed analysis of groundwater behavior thus should be conducted from the design stage to construction.

An Analytical Study on the Determination of the Lowest Improvement Depth of Deep Mixing Method (심층혼합공법의 최저 개량 심도 결정에 관한 해석적 연구)

  • Park, Choon-Sik;Song, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Design techniques for the deep mixing method, one of the soft ground improvement methods, include two ways to interpret the ground as composite ground and pile ground. However, since comparative studies on these two approaches are insufficient, it is difficult to clearly define the analysis criteria in the design. In this study, two-dimensional and three-dimensional analyses have been performed with different conditions. The three conditions, the embankment height, depth of soft ground, and replacement ratio of reinforcement zones were varied and the analysis was performed on the basis of the assumption of composite ground and pile ground for each condition. As a result, the minimum depth of improvement in the two-dimensional analysis was deeper by 6.85~9.08% than in the three-dimensional analysis. The pile ground analysis showed that the depth of improvement was deeper by 12.22~14.45% than the composite ground analysis. Based on these results, it is concluded that for more accurate design, three-dimensional analysis should be performed rather than two-dimensional analysis. also, it is judged that necessary to analyze the ground as composite ground for economical design, and as the pile ground analysis for stable design.

Spatial analysis of Shoreline change in Northwest coast of Taean Peninsula

  • Yun, MyungHyun;Choi, ChulUong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2015
  • The coastline influenced naturally and artificially changes dynamically. While the long-term change is influenced by the rise in the surface of the sea and the changes in water level of the rivers, the short-term change is influenced by the tide, earthquake and storm. Also, man-made thoughtless development such as construction of embankment and reclaimed land not considering erosion and deformation of coast has been causes for breaking functions of coast and damages on natural environment. In order to manage coastal environment and resources effectively, In this study is intended to analyze and predict erosion in coastal environment and changes in sedimentation quantitatively by detecting changes in coastal line from data collection for satellite images and aerial LiDAR data. The coastal line in 2007 and 2012 was extracted by manufacturing Digital Surface Model (DSM) with Aviation LiDAR materials. For the coastal line in 2009 and 2010, Normalized Difference Vegetation Index (NDVI) method was used to extract the KOMPSAT-2 image selected after considering tide level and wave height. The change rate of the coastal line is varied in line with the forms of the observation target but most of topography shows a tendency of being eroded as time goes by. Compared to the relatively monotonous beach of Taean, the gravel and rock has very complex form. Therefore, there are more errors in extraction of coastlines and the combination of transect and shoreline, which affect overall changes. Thus, we think the correction of the anomalies caused by these properties is required in the future research.

Stability Analyses for Excavated Slopes Considering the Anisotropic Shear Strength of the Layered Compacted Ground (다짐지반에 조성되는 굴착사면의 비등방성 전단강도를 고려한 안정성 분석)

  • 이병식;윤요진
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.27-35
    • /
    • 2002
  • To construct pipe lines, culverts, or other utility lines, temporary slopes formed by excavating the compacted embankment are frequently met with in the field. Ignoring stability analyses for such slopes and applying inappropriate slope inclinations often result in safety problems. In this study, stability of such slopes were investigated considering the influence of anisotropic shear strength of the layered compacted ground. A series of stability analyses were conducted for slopes varying the slope angle and the height, and assuming isotropic and anisotropic shear strength conditions, respectively. The anisotropic shear strength of the compacted soil was determined from the direct shear test for layered soil blocks varying the inclination angle between the horizontal shear surface and the direction of the soil layer. As a result of the analyses, it has been concluded that the appropriate slope inclination f3r a temporary slope could vary in accordance with the consideration of anisotropy. However, the factor of safety as well as the location of the failure surface did not show significant variation.

Study on Selection Criteria of Small-Scales Reservoirs for Emergency Action Plan(EAP) Establishment (소규모 저수지 대상 비상대처계획 수립 선정기준 연구)

  • Park, Ki-Chan;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.101-112
    • /
    • 2019
  • This study developed selection criteria of small-scales reservoirs, having under $300,000m^3$ storage capacity, for the Emergency Action Plan(EAP) establishment in order to reduce the disaster risks of the reservoir's failures. Those reservoirs are out of ranges of Korean EAP establishment standard, but have potential risk of disasters as they have often failed by the recent extreme rainfall events and earthquakes, causing economical and life losses. The problem of reservoir aging is also one of the reasons of them. In this study, the developed selection criteria of small reservoirs for EAP establishment are storage capacity, embankment height, reservoir age, heavy rain factor and earthquake factor. These criteria were selected based on the review of the existing EAP establishment guidelines, analysis of the past dam failure cases, and the previous related studies. The quantification of these criteria were conducted for the practical applications in the fields, and applied to 67 previous failures in order to investigate the relation of each criteria with these failures. The earthquake factor found to be the highest relations followed by heavy rain factors, combination of earthquake and heavy rain factors, and reservoir age. The classification was made as observation and review groups for EAP establishments based on overlapping numbers of each criteria. This classifications applied to 354 reservoirs designated as having the potential disaster risk by MOIS, and showed 38.4% of observation and 11.9% of review groups. Anticipatory monitoring and regular inspection should be made by professional facility managers for the observation group, and necessity of EAP establishment should be assessed for the review group based on the downstream status and financial budget.

Characteristics of Long-Term Settlement in the Soft Ground of Nakdong River by Numerical Analysis (수치해석에 의한 낙동강 하구 연약지반의 장기침하특성)

  • Park, Choon-Sik;Ryu, Mean-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.55-67
    • /
    • 2019
  • Deep soft ground in mouth of Nackdong river requires to be analysed with prediction method concerning characteristics of secondary consolidation from the beginning because it causes excessive settlement due to time-dependant secondary consolidation characteristics. This study investigated characteristics of extended settlement by conducting one-dimensional theory, elasto-plastic model and visco-elasto-plastic model as well as analyzing long-term measuring data observed over 2,000 days. According to one-dimensional theory and elasto-plastic model, there is not definite correlation between height of embankment and depth of soft ground while visco-elasto-plastic model showed similar result of settlement to that of long-term measuring data. Consequently it is suggested that applying visco-elasto-plastic model to developing deep underground place as studied area on predicting extended settlement before construction prevents economic loss and delay during process by preparing secondary consolidation characteristics.

Study on the transient flow induced by the windbreak transition regions in a railway subject to crosswinds

  • Zheng-Wei, Chen;Syeda Anam, Hashmi;Tang-Hong, Liu;Wen-Hui, Li;Zhuang, Sun;Dong-Run, Liu;Hassan, Hemida;Hong-Kang, Liu
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.309-322
    • /
    • 2022
  • Due to the complex terrain around high-speed railways, the windbreaks were established along different landforms, resulting in irregular windbreak transition regions between different subgrade infrastructures (flat ground, cutting, embankment, etc). In this paper, the effect of a windbreak transition on the wind flow around railways subjected to crosswinds was studied. Wind tunnel testing was conducted to study the wind speed change around a windbreak transition on flat ground with a uniform wind speed inflow, and the collected data were used to validate a numerical simulation based on a detached eddy simulation method. The validated numerical method was then used to investigate the effect of the windbreak transition from the flat ground to cutting (the "cutting" is a railway subgrade type formed by digging down from the original ground) for three different wind incidence angles of 90°, 75°, and 105°. The deterioration mechanism of the flow fields and the reasons behind the occurrence of the peak wind velocities were explained in detail. The results showed that for the windbreak transition on flat ground, the impact was small. For the transition from the flat ground to the cutting, the influence was relatively large. The significant increase in the wind speeds was due to the right-angle structure of the windbreak transition, which resulted in sudden changes of the wind velocity as well as the direction. In addition, the height mismatch in the transition region worsened the protective effect of a typical windbreak.

Prediction and Assessment on Consolidation Settlement for Soft Ground by Hydraulic Fill (준설매립 연약지반에 대한 압밀침하 예측 및 평가)

  • Jeon, Je-Sung;Koo, Ja-Kap;Oh, Jeong-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2008
  • This paper describes the performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area composed of soft marine clay with high water content and high compressibility. From field monitoring results, excessive ground settlement compared with predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared with field monitoring results after additional surcharge was applied. It might be used for verification of recalculated results.

Sensitivity Analysis on Flood Level Changes by Offline Storage Creation Based on Unsteady Flow Modeling (부정류 모의 기반 오프라인 저류지 조성에 따른 홍수위 변화 민감도 분석)

  • Eun-kyung Jang;Un Ji;Sanghyeok Kim;Jiwon Ryu
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.217-225
    • /
    • 2023
  • This study analyzed the effect of flood level reduction in the case of creating and operating offline storage for the Jangdong district, which can be used as a flood buffer space for the Geumgang River, through one-dimensional unsteady flow numerical simulation. In particular, the sensitivity analysis of changes in the height and width (length) of transverse weirs on flood level changes was performed to provide quantitative information necessary for flood control facility (embankment) design. As a result of analyzing the flood control effect of the offline storage based on the peak flood discharge and level, spatially, the flood control effect at the planned flood buffer space site and the downstream end was confirmed, and it was confirmed that the flood reduction effect at the downstream occurred the most. By design conditions of the transverse overflow weir, the greatest flood reduction effect was found under the condition that the overflow weir height based on the 50-year frequency flood level and the transverse overflow weir width (length) of 125 m were considered. The effect of delaying the time to reach the maximum flood due to the operation of the offline storage site was also presented based on unsteady flow modeling.

Estimation of Earth Pressures Acting on Box Structures Buried in Ground (지중에 매설된 박스구조물에 작용하는 토압 산정)

  • Hong, Won-Pyo;Yun, Jung-Mann;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.23-33
    • /
    • 2015
  • The earth pressure acting on underground structure was measured by application of the instrumentation system in the subway construction site constructed by the method of cut-and-cover tunnel. The measured earth pressure was compared with the earth pressure obtained from the existed theoretical equation, and the actual earth pressure diagram acting on the underground structure was investigated. As a result of investigation, the vertical earth pressure is mainly affected by the embankment height, and the lateral earth pressure is significantly affected by whether the existence of earth retaining structures or not. The measured vertical earth pressure is very similar to the theoretical earth pressure proposed by Bierbaumer. The measured lateral earth pressure is closed to the active earth pressure proposed by Rankine rather than the earth pressure at rest. The coefficient of earth pressure in soil deposit layer is about 0.35, and the coefficient in soft rock deposit layer is about 0.21. For design and construction the underground structures, therefore, it is reasonable estimation that the lateral earth pressure acting on structures installed in soil deposit layers is an average value between active earth pressure and earth pressure at rest. In rock deposit layers, the lateral earth pressure acting on structure is an active earth pressure only.