• Title/Summary/Keyword: Eluted Water

Search Result 170, Processing Time 0.025 seconds

Chemically Modified Submicron Silica Particulate Extractants for Preconcentration of Mercury(II)

  • Kaur, Anupreet;Gupta, Usha
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1932-1936
    • /
    • 2008
  • A new analytical method using 1-(2-pyridylazo)-2-naphthol modified $SiO_2$ nanoparticles as solid-phase extractant has been developed for the preconcentration of trace amounts of mercury(II) in different water samples. Conditions of the analysis such as preconcentration time, effect of pH, sample volumes, shaking time, elution conditions and effects of interfering ions for the recovery of analyte were investigated. The adsorption capacity of nanometer $SiO_2$-PAN was found to be 260 ${\mu}molg^{-1}$ at optimum pH and the detection limit (3$\sigma$) was 0.48 ${\mu}gL^{-1}$. The extractant showed rapid kinetic sorption. The adsorption equilibrium of mercury(II) on nanometer $SiO_2$-PAN was achieved just in 5 mins. Adsorbed mercury(II) was easily eluted with 5 mL of 6 M hydrochloric acid. The maximum preconcentration factor was 50. The method was applied for the determination of trace amounts of mercury(II) in various water samples and industrial effluents.

On-line Trace Enrichment for the Determination of Insulin in Biological Samples Using Reversed-Phase High Performance Liquid Chromatography with Column Switching

  • Lee, Jung-Sook;Lee, Heeyong;Lee, Hye-Suk;Lee, Kang-Choon
    • Archives of Pharmacal Research
    • /
    • v.17 no.5
    • /
    • pp.360-363
    • /
    • 1994
  • Column--swtiching technique with a reversed-phase high performance liquid chromatographic method has been developed for the routine analysis of radioiodinated insulin and its degadation products in biological fluids. The diluted biological samples were loaded onto a precolumn packed with LiChrosorb RP-8 $(25-40{\;}{\mu}m)$ using 0.1% trifuoroacetic acid (TFA) in water as a washing solvent. After valve switching, the concentrated insulins were eluted in the back-flush mode and separated by a W-Porex $C_{18}$ column with a gradient of 0.1% TFA in water and 0.1% TFA in acetonitrile as the mobile phase. The method showed good precision, accuracy and speed with the detection limit of 20 pg/ml. Total analysis time per sample was about 40 min and the coefficients of variation were less than 8, 2%.

  • PDF

Effects of TiO$_2$ Photodegradation on Leaching from Epoxy Resin Chemical in Water and Biological Toxicity (수용액에 용출된 에폭시수지 화합물의 TiO$_2$ 광분해효과와 생물독성에 미치는 영향)

  • Yeo Min Kyeong;Cho Eun Joung
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.271-278
    • /
    • 2004
  • Epoxy resins are mostly used as a molding material for drinking water tank. Bisphenol A is used at a constituent material for epoxy resins and is widely suspected to act as an endocrine disrupter. In this study, we investigated embryo hatching in zebrafish reared in water undergone leaching process of expoxy resin, and found a decreased survival rate. Bisphenol A eluted from epoxy resin in drinking water tank was completely degraded by TiO$_2$ photocatalysis. We detected 7.8 ng/ml of bisphenol A in epoxy resin tank, and observed that the concentration was undetectable after 48h photocatalysis over TiO$_2$. There was no toxicity in hatching rates in zebrafish and morphogenesis after photocatalysis. The effect of TiO$_2$ photocatalytic reactions on the catalase activities in the f]y stage of zebrafish was also examined. At 1 week post hatching, cataiase activities were higher both in the group of epoxy resin with 48 h TiO$_2$ photocatalysis and in the TiO$_2$ photocatalysis for 48 hours were higher than control group. However catalase activities of the treatment group of epoxy resin by TiO$_2$ photocatalysis for 48 hours were similar to control in 5 weeks post hatching fries. In conclusion, the toxicity of TiO$_2$ photocatalysis was not observed in this zebrafish.

Changes in the Free Amino Acid Content of the Shucked Oyster Crassostrea gigas Stored in Salt Water at 3℃

  • Tanimoto, Shota;Kawakami, Koji;Morimoto, Satoshi
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • Shucked oysters were soaked in an equal weight of salt water and stored at $3^{\circ}C$ for 7 days. Changes in the free amino acid content of the whole body and in the adductor muscle were evaluated by a practical distribution method. With the exception of aspartic acid and tyrosine, no significant changes in free amino acids or ammonia were observed in whole-body shucked oysters during the storage period. In contrast, the majority of free amino acids in the adductor muscle decreased significantly. Most of these free amino acids were detected in considerable amounts in the surrounding salt water after 7 days of storage. Both the weight of the whole body and the salinity of the surrounding salt water decreased significantly during the storage period. These results suggest that free amino acids were eluted from the cutting surface of the adductor muscle and indicate that the free amino acid content per shucked oyster and in the adductor muscle, decreases during cold storage.

Effects of CellCaSi and Inorganic Additives on Phosphorus Removal in Water (규산질다공체와 무기첨가물의 수중 인 제거 효과)

  • Park, Myung-Hwan;Han, Myung-Soo;Lee, Seog-June;Ahn, Chi-Yong;Yoon, Byung-Dae;Oh, Hee-Mock
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.213-219
    • /
    • 2002
  • The CellCaSi, a porous silicate material, was tested for the removal of phosphorus (P as phosphate) in water. The effect of the CellCaSi was investigated on the basis of both particle size (under 1,2, and 4 mm) and added amount (0, 1, 2.5, 5, and 10 g/1) of the CellCaSi. The removal efficiency of phosphorus was highest with a particle size of under 1 mm and also increased with an increasing amount of the CellCaSi. The pH change showed little effect on the phosphorus removal of the CellCaSi. The calcium ion was eluted from the CellCaSi into the water, while the aluminium and iron were not. The eluted calcium ion was combined with dissolved phosphorus and then precipitated. The highest removal efficiency of phosphorus was obtained by the combined addition of the CellCaSi, calcium chloride, and ferric chloride. That is, the phosphorus concentrations of 0.10 and 1.0 mg/1 decreased to 0.03 and 0.47 mg/l by the addition of the CellCaSi (1 g/l), calcium ion (30 mg/l), and ferric ion (1 mg/l) at day 8 after treatment. The water qualities at the end of the experiment were as follows: pH was 8.1 and conductivity was 318 ${\mu}$S/cm (a registered maximum conductivity of 500${\mu}$S/cm for raw and potable wafers).

Fast and Accurate Determination of Algal Toxins in Water using Online Preconcentration and UPLC-Orbitrap Mass Spectrometry (온라인 시료주입과 UPLC-Orbitrap 질량분석법을 이용한 수질 조류독소의 고속분석방법 개발 및 환경시료적용)

  • Jang, Je-Heon;Kim, Yun-Seok;Choi, Jae-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.843-850
    • /
    • 2012
  • Due to the fast response to algae bloom issue in drinking water treatment plant, very fast determination methodology for algal toxin is required. In this study, column switching technique based online preconcentration method was combined with high resolution full scan mass spectrometer to save sample preparation time and to obtain fast and accurate result. After parameter optimization of online preconcentration, 1mL filtered sample was directly injected to trap column with switching valve system. Next, target toxins are eluted by 98% acetonitrile and analysed with 150 - 1,100 amu scan range at 50,000 resolving power. Method detection limit (MDL) for microcystin-LR, the most toxic isomer, was 0.1 ng/mL and others such as microcystin-YR, microcystin-RR and nodularin were 0.08, 0.03 and 0.04 ng/mL, respectively. This is the best improved sensitivities with 1mL volume in the literature. Furthermore, due to the use of ultra pressure HPLC (UPLC), the whole method run was completed in 4 min. Real sample applications for 173 sample including 55 surface water and 118 treatment plant samples for raw and treated water could be done within 16 hours. In our calculation, this methodology is roughly 80% faster than the previous manual solid-phase extraction with LC-MS/MS method.

Spectrophotometric Determination of Ultra trace Tri & Hexavalent Chromium by Using on-line Flow Injection Analysis with Dual Pre-concentration Column

  • Jung, Sung-Woon;Lim, Hyun-Woo;Kang, Chul-Ho;Choi, Yong-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3437-3442
    • /
    • 2011
  • An on-line flow injection analysis with dual pre-concentration method was developed to determine the ultra trace tri and hexavalent chromium in water. In this system, the cation and anion pre-concentration columns were combined with a 10-port injection valve and then used to separate and concentrate Cr (III) and Cr (VI) selectively. The two species of concentrated chromium were sequentially eluted and determined by using HCl-KCl buffer of pH 1.8 as an eluent. Cr (III) was oxidized by hydrogen peroxide to Cr (VI). It was detected spectrophotometrically at 548 nm by complexation with DPC (diphenylcarbazide). Several factors such as concentration of $H_2O_2$, DPC and coil length in reaction condition were optimized. The linear range for Cr (III) and Cr (VI) was 0.1-50 ${\mu}g$/L. The limit of detections ($3{\sigma}$) of Cr (III) and Cr (VI) were 52 ng/L and 44 ng/L under the optimized FIA system, and their recoveries 98% and 103%, respectively. This method was applied to analyze contamination level of chromium species in tap water, groundwater and bottled water.

The Effective Preparation of Flavonoids from Scutellaria baicalensis GEORGI by Diaion HP-20 Resin

  • Yu, Young-Beob
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.635-641
    • /
    • 2014
  • Scutellaria baicalensis $G_{EORGI}$ (Scutellariae Radix) has been used to clear heat and to dry dampness in the stomach or intestines, which manifests as diarrhea or dysenteric disorder. In this study, we investigated the effective preparation of active components in Scutellariae Radix using the methods of solvent extraction and absorption fractionation for the development of new functional food or pharmaceuticals. The marker substances, baicalin, baicalein, wogonoside, and wogonin were directly isolated from the Scutellariae Radix. There chemical structures were elucidated by spectroscopic analysis. The Scutellariae Radix was extracted with hot water. To enhance yield of flavonoids in Scutellariae Radix, the hot water extract was dissolved in ethanol with concentration dependent manner. The precipitates were separated using centrifugal techniques at 10,000 rpm. Supernatant liquid was applied to the HPLC for quantification of major compounds. Separately, the hot water extract was absorbed on Diaion HP-20 resin. And then, the absorbed fraction was eluted with methanol for HPLC. The contents of baicalin, baicalein, wogonoside and wogonin in different treatment methods were analyzed by HPLC. Total amount of four major components were 16.9% in 50% ethanol extract, 21.7% in 70% ethanol extract, 20.5% in 90% ethanol extract, and 39.3% in absorbed fraction of Diaion HP-20 resin. In these results, we found that resin absorption method is suitable for the extraction of enriched flavonoids from Scutellariae Radix.

Direct Bio-regeneration of Nitrate-laden Ion-exchange Resin (질산성질소에 파과된 이온교환수지의 생물학적 직접 재생)

  • Nam, Youn-Woo;Bae, Byung-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.777-781
    • /
    • 2013
  • Ion-exchange technology is one of the best for removing nitrate from drinking water. However, problems related to the disposal of spent brine from regeneration of exhausted resins must be overcome so that ion exchange can be applied more widely and economically, especially in small communities. In this background, a combined bio-regeneration and ion-exchange system was operated in order to prove that nitrate-laden resins could be bio-regenerated through direct contact with denitrifying bacteria. A nitrate-selective A520E resin was successfully regenerated by denitrifying bacteria. The bio-regeneration efficiency of nitrate-laden resins increased with the amount of flow passed through the ion-exchange column. When the fully exhausted resin was bio-regenerated for 5 days at the flowrate of 30 BV/hr and MLSS concentration of $125{\pm}25mg/L$, 97.5% of ion-exchange capacity was recovered. Measurement of nitrate concentrations in the column effluents also revealed that less than 5% of nitrate was eluted from the resin during 5 days of bio-regeneration. This result indicates that the main mechanism of bio-regeneration is the direct reduction of nitrate by denitrifying bacteria on the resin.

Analytical Methods for the Isolation of Dehydrotomatine and ${\alpha}$-Tomatine in Tomato Fruits by Use of Alumina Column Chromatography and High-Performance Liquid Chromatography (Alumina Column Chromatography와 HPLC에 의한 토마토의 Dehydrotomatine 및 ${\alpha}$-Tomatine 단리방법 연구)

  • Choi, Suk-Hyun;Kim, Hyen-Ryung;Lee, Jin-Shik
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.4
    • /
    • pp.556-561
    • /
    • 2010
  • Tomato fruits(Lycoperisicon esculentum) synthesize the glycoalkaloids dehydrotomatine and ${\alpha}$-tomatine, possibly as defense against bacteria, fungi and insects. We developed a new effective method to prepare and purify dehydrotomatine and ${\alpha}$-tomatine that exists in tomato fruits using alumina column chromatography and high performance liquid chromatography (HPLC). The tomato glycoalkaloids(TGA) in tomato was extracted with 2% acetic acid, and then precipitated with ammonium hydroxide(pH=10.5). The dry precipitate substance was applied on alumina column, and then fractionated with water saturated n-butylalcohol. The TGA(Fr. No. 26~36) were collected and dried under reduced pressure. The TGA was performed on a reverse phase HPLC(Inertsil ODS-2, $5\;{\mu}m$), eluted with acetonitrile/20mM $KH_2PO_4$(24:76, v/v) at 208 nm. Two peaks were detected on HPLC, and individual peak was collected by repeating HPLC. Furthermore, to confirm the identity dehydrotomatine and ${\alpha}$-tomatine, each peak isolated was hydrolyzed with 1N HCl into sugar and aglycone tomatidine. The sugars were converted to trimethylsilyl ester derivatives. The nature and molar ratios of sugars were identified by gas-liquid chromatography(GLC) and the aglycone by high-performance liquid chromatography(HPLC). The first peak (Rt=17.5 min) eluted from HPLC was identified as dehydrotomatine, and second peak(Rt=21.0 min) was as ${\alpha}$-tomatine. This technique has been used effectively to prepare and isolate dehydrotomatine and ${\alpha}$-tomatine from tomato fruits.