• Title/Summary/Keyword: Elongation at Break

Search Result 244, Processing Time 0.023 seconds

Effect of Carbohydrates on in vitro Shoot Growth of Various Prunus Species

  • Cheong, Eun Ju;An, Chanhoon
    • Korean Journal of Plant Resources
    • /
    • v.28 no.3
    • /
    • pp.357-362
    • /
    • 2015
  • Carbohydrate sources are one of important factors associated with macro- and micro nutrients and phytohormones in vitro culture medium for shoot growth. The optimal carbohydrates for eight species of the genus Prunus which are economically important fruit crop was evaluated at the initiation and elongation stages. All carbohydrate seemed utilized for the bud break and leaf growth at the early stage of culture. However, shoot elongation and fresh weight of species tested were superior in the medium containing 90 mM of fructose or glucose rather than sucrose. There was no difference between glucose and fructose. Adventitious shoots from the axillary buds were induced in most species but no significant differences were observed except for two species (P. salicina ‘Shiro’ and P. tomentosa). These result demonstrated that glucose and fructose were suitable carbohydrate sources for diverse Prunus species than sucrose, although the response to the carbohydrates in the medium were slightly different in the species.

Mechanical Properties and Biodegradability of HDPE/TPS Blends (HDPE/TPS블렌드의 물성 및 생분해도)

  • 이상일;홍경민;서석훈;신용섭;김봉식;신부영
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.145-151
    • /
    • 2002
  • Thermoplastic starch(TPS) was prepared from mixing starch and glycerol by twin extruder. The blends were then prepared from high density polyethylene(HDPE) and TPS. Mechanical properties, thermal properties, and morphology of the blends were investigated. Their biodegradability was also studied by using aerobic composting method(ISO14855). Tensile strength, modulus and elongation at break decreased as the content of TPS increased. In particular elongation at break decreased rapidly even at the lower content of TPS. The melting temperatures of the blends were not changed, which showed that HDPE and TPS were immiscible. The morphology of the fractured surface of blend films was investigated by scanning electron microscopy(SEM). It was found that phases were separated. After composting for 45days, the biodegradability of the blends increased as the content of TPS increased.

The Effect of Washing Conditions on the Dimension and Mechanical Properties of Spandex Yarns (세척조건에 스판덱스사의 길이와 기계적 성질에 미치는 영향)

  • Chung, Hae-Won;Kim, Mi-Kyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.12 s.148
    • /
    • pp.1619-1626
    • /
    • 2005
  • The durability of a stretch fabric is mainly related to the change in the dimension and mechanical properties of elastomeric fibers during wearing and washing. In this study, we examined the effects of washing temperature, presoaking time and the number of washing cycles on the change in length, tenacity, elongation at break, and permanent elongation after six repeated cycles of $100\%$ extension and relaxation of spandex yams with varying fineness and with a different rate of extension during heat-set. The spandex yarns continued to shrink as the wash temperature and the number of wash cycles increased. In addition, the finer spandex yams decreased in length more than the thicker yams. The increase in temperature and presoaking time tended to cause a slight decrease in the tenacity and elongation at break of the spandex yarns. Permanent elongation of the spandex yams also increased as the temperature, presoaking time and the number of washing cycles increased. Moreover, an extended presoaking time followed by washing at $40\%$ like repeated washing cycles showed the great increase in the permanent elongation of spandex yams. The thinner spandex yin had a better elasticity than the thicker one, since the former had a lower permanent elongation percentage than the latter. Based on the DSC thermograms, the melting points of the spandex yarns after washing were almost the same as those of the spandex yarns before washing.

Structure and Properties of the Organoclay Filled NR/BR Nanocomposites

  • Kim Won-Ho;Kim Sang-Kwon;Kang Jong-Hyub;Choe Young-Sun;Chang Young-Wook
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.187-193
    • /
    • 2006
  • Organoclay, was applied as a filler, in place of carbon black and silica, to a natural rubber (NR)/butadiene rubber (BR) blend. A compounding method was used to disperse and separate the layered silicates. The effect of a coupling agent on the vulcanizates was evaluated using both the silica and organoclay filled compounds. After the compounding processes were completed, the XRD diffraction peaks disappeared, but then reappeared after vulcanization. The scorch times for the organoclay-filled compounds were very short compared to those for carbon black and silica-filled compounds. The organoclay-filled compounds showed high values of tensile strength, modulus, tear energy, and elongation at the break. When ranked by viscosity, the compounds appeared in the following order: silica > silica (Si-69) > organoclay > organoclay (Si-69) > carbon black. Fractional hysteresis, tensile set, and wear rates were very consistent with the viscosity of the vulcanizates. The Si 69 coupling agent increased reversion resistance, the maximum torque values in the ODR, modulus, and wear resistance, but decreased elongation at the break, fractional hysteresis, and tension set of the vulcanizates.

Evaluation of Radiation Degradation or Crosslinked Polyethylene using TGA (TGA를 이용한 가교폴리에틸렌의 방사선 열화 평가)

  • Lee, Chung;Kim, Ki-Yup;Ryu, Boo-Hyung;Lim, Kee-Joe
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.50-55
    • /
    • 2003
  • Radiation degradation of crosslinked polyethylene(XLPE) was investigated using thermogravimetric analysis(TGA), The results of TGA were compared with FT-IR, melting temperature, oxidation induction time, and elongation at break on the XLPE exposed by $\gamma$-ray. 5% decomposition temperature of $\gamma$-ray irradiated XLPE showed similar tendencies with the case of elongation at break. Both properties agreed below 1000 KGy, however, did not show any remarkable characteristics above 1000 kGy, these properties can be useful to evaluate the radiation degradation of XLPE for only low irradiated region. Above 1000 kGy, the thermal decomposition activation energy showed decreased, on the contrary, increasing below 1000 kGy. Compared with FT-IR spectrum of irradiated XLPE, it was confirmed that the oxidation reaction was still occurring below 1000 kGy. Radiation degradation of XLPE was dependent upon the irradiation doses, TGA can be a useful tool to evaluate the degradation.

Dielectric Properties on Gamma Ray Irradiated Low Density Polyethylene (방사선조사에 따른 저밀도 폴리에틸렌의 유전특성)

  • Kim, Ki-Yup;Ryu, Boo-Hyung;Kang, Seong-Hwa;Lee, Chung;Lim, Kee-Joe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.938-942
    • /
    • 2000
  • Radiation effects on dielectric properties of low density polyethylene(LDPE) were investigated using the various measurements of FT-IR, gel content and elongation at break. FT-IR spectra showed that polar groups were comprised in LDPE due to radiation treatment. It was also confirmed that the formation of polar groups on LDPE caused the increased dielectric properties such as permittivity and tan $\delta$. However, in this study, any evidence of decreasing permittivity was not found although the morphological change of LDPE could be identified from the increasing gel content and the decreasing elongation.

  • PDF

Effects of Refining and Kneading of Kraft Pulp Fibers on Elongation and Fracture Toughness of Paper (크라프트 펄프 섬유의 다단 고해와 니딩 처리에 따른 종이 신장률 및 파괴인성의 변화)

  • Lim, Jong-Hyck;Chae, Hee-Jae;Park, Chang-Soon;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.39-44
    • /
    • 2010
  • To increase the fracture toughness of paper made of Sw-BKP, refining and kneading conditions were analyzed. Curl and kink was known to increase the strain at break and the fracture touhness. Sequence of multiple stage beating, beating load and kneading were compared. When we applied a kneading treatment using a kneader at the final step, the most of the fiber transformation such as curl and kink occurred, the more the bulk and air-permeability improved. Physical strength and TEA(tensile energy absorption) were increased higher when kneading treatment before refining than only refining treatment was performed. TEA was increased because of higher elongation. It was found that the highest fracture toughness was obtained when applying the kneading treatment to the fibers in the pre-treatment step rather than in the middle step of beating or in the final step of beating.

Rheological and mechanical properties of ABS/PC blends

  • Khan M.M.K.;Liang R.F.;Gupta R.K.;Agarwal S.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Acrylonitrile-Butadiene-Styrene (ABS), polycarbonate (PC) and their alloys are an important class of engineering thermoplastics that are widely used for automotive industry, computer and equipment housings. For the process of recycling mixtures of ABS and PC, it is desirable to know how sensitive the blend properties are to changes in compositions. It was for this reason that blends of virgin ABS and virgin PC at five different compositions, namely, $15\%,\;30\%,\;50\%,\;70%$ and $85\%$ by weight of ABS were prepared and characterised by rheological and mechanical measurements. Rheological properties of these blends in steady, oscillatory and transient step shear and mechanical properties, namely, tensile strength, elongation-at-break and Izod impact strength are reported. The results show that PC behaves in a relatively Newtonian manner, but ABS exhibits significant shear thinning. The ABS-rich blends show a trend that is similar to that of ABS, while PC-rich blends, namely $0\%$ and $15\%$, exhibit a nearly Newtonian behaviour. However, at a fixed shear rate or frequency, the steady shear or the dynamic viscosity varied respectively in a non-mono-tonic manner with composition. Except for $15\%$ blend, the viscosities of other blends fall into a narrow band indicating a wide-operation window of varying blend ratio. The blends exhibited a lower viscosity than either of the two pure components. The other noticeable feature was that the blends at $70\%$ and $85\%$ ABS content had a higher G' than pure ABS, indicating an enhancement of elastic effect. The tensile yield strength of the blends followed the 'rule of mixtures' showing a decreasing value with the increase of ABS content in PC. However, the elongation-at-break and the impact strength did not appear to obey this 'rule of mixtures,' which suggests that morphology of the blends also plays a significant role in determining the properties. Indeed, scanning electron micrographs of the fracture surfaces of the different blends validate this hypothesis, and the $15\%$ blend is seen to have the most distinct morphology and correspondingly different behaviour and properties.

Effect of NR/BR Blends ratio and Oil Content on the Mechanical Properties of Rubber Isolator at Low Temperature (저온환경에서 NR/BR 블렌드 조성비 및 오일함량이 방진고무재료의 기계적 특성에 미치는 영향)

  • Kim, Wan-Doo;Kim, Wan-Soo;Woo, Chang-Soo;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • New compounds were made using various NR/BR blend ratio and oil content to improve mechanical properties of rubber isolator at low temperature. Mechanical properties were investigated as a function of NR/BR blend ratio and oil content. Hardness and tensile modulus generally increased, but tensile strength and elongation at break decreased with increasing BR content. Hardness, tensile modulus and tensile strength decreased, but elongation at break were nearly the same with increasing oil content. The glass transition temperature of NR and BR were found to be $-50^{\circ}C$ and $-90^{\circ}C$ respectively based on the abrupt drops in storage elastic modulus and peak of loss factor. Two distinct transition temperature were observed in NR/BR blend compounds and each transition point was not affected by blend level indicating incompatible nature of NR/BR blend.

Thermal Insulation Life Prediction of EPDM rubber Used for Electrical Insulation (고압절연용 EPDM rubber의 내열수명 예측)

  • Lee, Chul-Ho;Jeon, Young-Jun;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1408-1410
    • /
    • 1997
  • Arrhenius plots are useful in predicting long-term use temperatures of organic materials and in choosing parameters for accelerated aging. The effects of antioxidant on the heat resistance and temperature index of EPDM rubber used for electrical insulation were investigated. The short-time points were obtained by 50% retention of elongation at break.

  • PDF