• 제목/요약/키워드: Elongation and Hardness

검색결과 364건 처리시간 0.033초

Non-destructive Evaluation Method for Service Lifetime of Chloroprene Rubber Compound Using Hardness

  • Park, Kwang-Hwa;Lee, Chan-Gu;Park, Joon-Hyung;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • 제56권3호
    • /
    • pp.124-135
    • /
    • 2021
  • Evaluating service lives of rubber materials at certain temperatures requires a destructive method (typically using elongation at break). In this study, a non-destructive method based on hardness change rate was proposed for evaluating the service life of chloroprene rubber (CR). Compared to the destructive method, this non-destructive method ensures homogeneity of CR specimens and requires a small number of samples. Thermal accelerated degradation test was conducted on the CR specimens at 55, 70, 85, 100, and 125℃, and the tensile strength, elongation at break, and hardness were measured. The results of the experiment were compared to those of the accelerated life evaluation method proposed in this study. Comparing the analyzed lives in the high temperature region (70, 85, 100, and 125℃), the difference between the service lives for the destructive method (using the elongation at break) and non-destructive method (using the hardness) was approximately 0.1 year. Therefore, it was confirmed that the proposed non-destructive evaluation method based on hardness changes can evaluate the actual life of CR under thermally accelerated degradation conditions.

PUR/CuO 복합재료의 기계적 특성 연구 (A Study on the Mechanical Properties of Composite Materials of Polyurethane Resin and CuO)

  • 김은봉;구수진;정상구;김석현
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.106-114
    • /
    • 2014
  • For the purpose of development of polyurethane sealing material, polyurethane resins reinforced with CuO were prepared from polyol and MOAC(4,4'-Methylenebis(2-chlorobenzeneamine)). And the effects of compositions on the mechanical properties of the reinforced polyurethane resin were experimentally examined. The polyurethane resin got to be thermally decomposed at $260^{\circ}C$ and completely carbonized around $500^{\circ}C$. Tensile strength, elongation and hardness of the polyurethane resin increased with the content of MOCA. CuO was uniformly dispersed in the polyurethane resin by 1 minute's ultrasonic radiation. Tensile strength, elongation and hardness of the polyurethane resin reinforced with CuO increased with the content of CuO. Tensile strength and hardness of the reinforced polyurethane resin increased with particle size of the CuO, but elongation decreased. CuO showed higher tensile strength and hardness than any other additives, and lowest elongation.

316L 스테인리스강의 기계적 성질에 미치는 가공 열처리의 영향 (Effect of Thermomechanical Treatment on the Mechanical Properties of 316L Stainless Steel)

  • 강창룡;권민기
    • 동력기계공학회지
    • /
    • 제18권3호
    • /
    • pp.100-105
    • /
    • 2014
  • This study is to investigate the effect of thermo mechanical treatment on the mechanical properties of 316L stainless steel. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite was formed by deformation. With increasing number of thermo mechanical treatment, volume fraction of martensite was increased rapidly, and then unchanged. With increasing number of thermo mechanical treatment, hardness and strength was increased rapidly, and then unchanged while elongation was decreased rapidly, and then unchanged. With increasing volume fraction of martensite formed by thermo mechanical treatment, hardness and strength was increased rapidly, elongation was decreased rapidly. Thus, hardness, strength and elongation of thermo mechanical treated 316L stainless steel was strongly affected by martensite formed by thermo mechanical treatment. Good combination of strength and elongation was obtained from thermomechanical treatment.

쉘 적층 주조 구상흑연주철의 기계적 성질에 미치는 주형 변수 및 주 합금 원소의 영향 (Effects of Mold Variable and Main Alloying Element on the Mechanical Properties of Ductile Cast Iron Poured into Shell Stack Mold)

  • 김효민;권민영;천병철;권도영;김기엽;권해욱
    • 한국주조공학회지
    • /
    • 제40권2호
    • /
    • pp.25-33
    • /
    • 2020
  • The effects of mold variable and main alloying element on the mechanical properties of ductile cast iron poured into shell stack mold were investigated. The strength and hardness of with the smaller cross-section of the diameter of 6.25mm were higher than those of 12.50mm. On the other hand, the elongation of the former was lower than that of the latter. The strength and hardness of the specimens obtained from the center layer in the 5-story stack mold were the lowest and those for other specimens were increased with increased distance from the center. The elongation of those were the highest of all. The strength and hardness of the specimens obtained from the center layer were decreased the elongation was increased with the increased number of layers. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of reaidual magnesium and carbon content added, respectively. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of silicon content added to 2.45wt% and rather decreased with that to 2.85wt%. The effect of silicon content showed the opposite tendency to those of residual magnesium and carbon content.

쉘 적층 주조 구상흑연주철의 기계적 성질에 미치는 합금원소 및 열처리의 영향 (Effects of Alloying Element and Heat Treatment on the Mechanical Properties of Ductile Cast Iron Poured into Shell Stack Mold)

  • 김효민;권민영;천병철;권도영;김기엽;권해욱
    • 한국주조공학회지
    • /
    • 제40권3호
    • /
    • pp.76-84
    • /
    • 2020
  • The effects of Alloying Element and Heat Treatment on the mechanical properties of ductile cast iron poured into shell stack molds were investigated. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of tin and copper added, respectively. Those were greatly increased with the increased amount of tin added and the elongation was roughly decreased with it. In the simultaneous addition of copper and tin, the strength and hardness of the tin increased, but the elongation rate decreased. Those were greatly increased and this was decreased with normalizing. In the case of specimens with smaller section sizes during austempering processing, the strength and hardness were higher than those with larger sections, but the elongation rate was lower.

Incoloy 825 합금의 기계적 성질에 미치는 열간 단조비와 용체화 온도의 영향 (Effect of Hot Forging Ratio and Solution Treatment Temperature on the Mechanical Properties of Incoloy 825 Alloy)

  • 김도훈;박영태;손영민;강창룡
    • 열처리공학회지
    • /
    • 제31권5호
    • /
    • pp.213-219
    • /
    • 2018
  • This study was carried out to investigate the effect of hot forging ratio and solution treatment temperature on the mechanical properties of incoloy 825 alloy. With an increasing of the hot forging ratio, grain size and range of grain size was decreased. With an increasing of the solution treatment temperature after 90% forging, grain size and range of grain size was increased. Cr carbides and Ti nitrides was precipitated at below $900^{\circ}C$ and volume fraction of precipitate was increased with an decreasing of the solution treatment temperature. With an increasing of the hot forging ratio, hardness, tensile strength and elongation, toughness was increased. With an increasing of the solution treatment temperature after 90% forging, hardness and strength was increased, elongation and toughness was decreased by grain refinement. With an increasing of the forging ratio, effect of solution treatment temperature on the hardness, strength and elongation was small, but on the toughness was large.

25Cr-7Ni-2Mo-4W 슈퍼 2상 스테인리스강의 기계적 성질에 미치는 R상의 영향 (Effect of R Phase Formation on the Mechanical Properties of 25Cr-7Ni-2Mo-4W Super Duplex Stainless Steel)

  • 이병찬;강창룡
    • 한국재료학회지
    • /
    • 제24권8호
    • /
    • pp.401-406
    • /
    • 2014
  • In this study, we investigated the precipitation behavior of the R-phase precipitated at the initial stage of aging and its effects on the mechanical properties of 25%Cr-7%Ni-2%Mo-4%W super duplex stainless steel. The R-phase was mainly precipitated at the interface of ferrite/austenite phases and inside of the ferrite phase during the initial stage of aging. It was transformed into the ${\sigma}$-phase with an increase of the aging time. The ferrite phase was decomposed into a new austenite(${\gamma}_2$)phase and the ${\sigma}$-phase by an aging treatment. The R phase was an intermetallic compound showing higher molybdenum and tungsten concentrations than the matrix and also showed higher molybdenum and tungsten concentrations than the ${\sigma}$ phase. In the initial stage of aging, precipitation of the R-phase did not change the hardness, the strength and the elongation. The hardness and the strength increased upon a longer aging time, but the elongation rapidly decreased. These results show that the R-phase did not significantly affect the hardness and the strength, though it did influence the elongation.

오스템퍼드 구상흑연주철의 미세조직 및 기계적 성질에 미치는 서브제로처리의 영향 (Effect of Subzero Treatment on the Microstructure and Mechanical Properties of Austempered Ductile Cast Iron)

  • 이광희;강창룡
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.47-52
    • /
    • 2008
  • This study was investigated the effect of subzero treatment in austempered ductile cast iron. Retained austenite transformed to martensite by subzero treatment and strain. With decreasing subzero treatment temperature and increasing strain, retained austenite transformed more to martensite and transformed 30% above by subzero treatment at $-196^{\circ}C$. With decreasing subzero treatment temperature, the value of strength and ratio of increasing of strength, hardness and ratio of increasing of hardness increased but the value of elongation and ratio of decreasing of elongation decreased. With decreasing subzero treatment temperature, impact value and ratio of decreasing of impact value decreased. In case of subzero treatment at $-196^{\circ}C$, hardness value increased about 18% and impact value decreased above 20%. We could find that in subzero treated specimens had a little of effect on the tensile properties but had very much effect on the hardness and value of the impact.

  • PDF

슈퍼 2상 스테인리스강의 미세조직 및 기계적 성질에 미치는 시효의 영향 (Effect of Aging on the Microstructure and Mechanical Properties in Super Duplex Stainless Steel)

  • 김수천;강창룡
    • 한국해양공학회지
    • /
    • 제23권3호
    • /
    • pp.40-45
    • /
    • 2009
  • With the increase in the annealing temperature, the volume fraction of austenite phase increased and the volume fraction of ferrite phase decreased. In compliance with the addition of N, not only the volume fraction of austenite phase was increased but also the austenite structure was made larger. Volume fraction of ${\sigma}$ phase was increased by decreasing of the volume fraction of ferrite phase, with the increase in the aging time and in compliance with the addition of N. As increasing in volume fraction of ${\sigma}$ phase, tensile strength and hardness increased, while elongation and impact value decreased. Elongation slowly decreased and impact value rapidly decreased at the early stage of aging. By the added N, tensile strength, elongation, hardness and impact value was increased.

신개발 유두컵 라이너용 고무조성물의 물리적 특성 조사 (Study on the Physical Properties of New Developed Teat Cup Liner Compounds)

  • 이정치
    • 한국임상수의학회지
    • /
    • 제24권2호
    • /
    • pp.201-207
    • /
    • 2007
  • The teat cup liner compounds with improved physical property were developed using tri-polymer blend of natural rubber(NR), ethylene propylene diene monomer rubber(EPDM) and butyl rubber, and the changes of the physical properties of compounds were measured under various conditions such as standard, thermal, alkaline detergent and acid solutions aging conditions. The hardness of the new teat cup liner compound 1 was 50 and that of the compound 2 was 51 under standard condition. The tensile strength and elongation of the new compound 1 were $154kgf/cm^2$ and 675% under the standard condition, respectively. Also, those of the new compound 2 were 180 kgf/cm and 634% under the same condition. Their hardness were increased about $2{\sim}6%$ and the tensile strength and elongation were decreased about 10% under the $25^{\circ}C$ water and detergent solutions. Even though the new teat cup liner compounds exhibited so much decreased tensile properties under the $105^{\circ}C$ thermal aged condition, they sustained more stable aged physical properties including tensile strength and elongation than those of imported teat cup liner materials. Consequently, the new teat cup liner compounds would give prolonged lift cycle if they are used as a teat cup liner product.