• Title/Summary/Keyword: Elliptical nozzle

Search Result 15, Processing Time 0.019 seconds

Atomization Characteristics of Effervescent Twin-fluid Nozzle with Different Nozzle Shapes (노즐 형상에 따른 Effervescent 이유체 노즐의 분무특성)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.146-152
    • /
    • 2017
  • An experimental study was carried out to investigate the spray characteristics of non-circular effervescent twin-fluid nozzles. For this purpose, two types of non-circular nozzles (E1, E2) and circular nozzle (C) were used. Three types of aerorators with hole diameters of 1.2, 1.7 and 2.1 mm were used. Each aerorator has a total of 12 holes. It is defined by area ratio which is ratio of exit orifice area and aerator hole area. Experiments were carried out by controlling the amount of air flowing after fixing the flow rate of the liquid, and the nozzle internal pressure and SMD were measured, and the jet image was taken from the nozzles. The discharge coefficients of the three kinds of nozzles were compared with the used in plain orifice's equation and the Jedelsky's equation, and the Jedelsky's equation was found to be about 3 times larger. In addition, empirical formula based on ALR, which is the largest variable in Jedelsky's equation, was derived. The droplet sizes(SMD) were found to be smaller in the non-circular shape than in the circular shape, which is concluded to be caused by the difference of the discharge coefficients.

An Experimental Study of Discharge Coefficient with Non-Circular Effervescent Type Twin-fluid Nozzle (비원형 Effervescent Type 이유체노즐의 Discharge Coefficient에 관한 실험적 연구)

  • Lee, Sang Ji;Park, Hyung Sun;Hong, Jung Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.682-685
    • /
    • 2017
  • An experimental study was carried out to investigate the injection characteristics of non-circular effervescent type twin-fluid nozzles. For this purpose, two types of non-circular nozzles (E1, E2) and one kind of circular nozzle (C) were used. At this time, the Aerorator mounted on the nozzle used three different diameters to match the aspect ratio with the nozzle exit area. Therefore, experiments were performed according to three aspect ratios for each nozzle, and a total experiments were conducted. Experiments were carried out by controlling the amount of air flowing after fixing the flow rate of the liquid, and the nozzle internal pressure and SMD were measured, and the jet image was taken from the nozzle. The discharge coefficients of the three kinds of nozzles were compared with the conventional equation and the Jedelsky's equation, and the Jedelsky's equation was found to be about 4 times larger. The droplet size (SMD) injected from the nozzle was found to be smaller in the non-circular shape than in the circular shape, which is expected to be caused by the difference of the discharge coefficient values.

  • PDF

Mechanics Evaluations of Stress Corrosion Cracking for Dissimilar Welds in Nuclear Piping System (원자력 배관 이종금속 용접부 웅력부식균열의 역학적 평가)

  • Park, Jun-Su;Na, Bok-Gyun;Kim, In-Yong
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.38-40
    • /
    • 2005
  • Fracture mechanics evaluation of stress corrosion cracking (SCC) in the dissimilar metal weld (DMW) for the nuclear piping system is performed; simulating the transition joint of the ferritic nozzle to austenitic safe-end fabricated with the Inconel Alloy A82/182 buttering and welds. Residual stresses in the DMW are computed by the finite element (FE) analyses Then, to investigate the SCC in the weld root under the combined residual and system operation stresses, the fracture mechanics parameters for a semi-elliptical surface crack are evaluated using the finite element alternating method (FEAM). As a result, it is found that the effect of weld residual stresses on the crack-driving forces is dominant, as high as three times or more than the operation stresses.

  • PDF

Reconstruction of Density Distribution for Unsteady and Asymmetric Flow Using Three-dimensional Digital Speckle Tomography (3차원 디지털 스펙클 토모그래피를 이용한 비정상 비대칭 유동의 밀도 분포 재건)

  • Kim, Yong-Jae;Ko, Han-Seo;Baek, Seung-Hwan
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.21-24
    • /
    • 2006
  • Transient and asymmetric density distributions have been investigated by a digital speckle tomography with a novel integration method. Multiple CCD images captured movements of speckles in three angles of view simultaneously because the flows were asymmetric and unsteady. The speckle movements which have been formed by a ground glass between no flow and downward butane flow from an elliptical nozzle have been calculated by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. A novel integration method has been developed to obtain projection data from the deflection angles for the speckle tomography. The unsteady density fields have been reconstructed from the accurate projection values by the digital speckle tomography method using the developed integration method.

  • PDF

Local heat transfer measurement from a concave surface to an oblique impinging jet (오목한 표면위에 분사되는 경사충돌제트에 대한 국소열전달계수의 측정)

  • 임경빈;김학주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.324-333
    • /
    • 1998
  • Measurements of the local heat transfer coefficients on a hemispherically concave surface with a round oblique impinging jet were made. The liquid crystal transient method was used for these measurements. This method, which is a variation of the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystal for the surface temperature measurements. The Reynolds number used was 23,000 and the nozzle -to -jet distance was L/d=2, 4, 6, 8 and 10 and the jet angle was $\alpha$=0$^{\circ}$, 15$^{\circ}$, 30$^{\circ}$and 40$^{\circ}$. In the experiment, the maximum Nusselt number at all region occurred at L/d(equation omitted)6 and Nusselt number decreases as the inclined jet angle increases. For the normal jet the contours of constant Nusselt number are circular and as the jet is inclined closer and closer to the surface the contours become elliptical shape. The decreasing rate of the Nusselt number at X/d> 0(upstream) on a surface curvature are higher than those on a flate plate and the decreasing rate of the Nusselt number at X/d <0(downstream) on a surface curvature are lower than those on a flate plate. And also, the decreasing rate of local Nusselt number distribution at X/d <0(upstream) exhibit lower than with X/d <0(downstream) as jet angle increases. The second maximum Nusselt number occurred at long distance from stagnation point as jet angle increases.

  • PDF