• Title/Summary/Keyword: Elizabethkingia miricola

Search Result 2, Processing Time 0.017 seconds

Elizabethkingia miricola BM10, a New Symbiotic Bacterium Isolated from the Hindgut of the Termite Reticulitermes speratus KMT001

  • LEE, Dongmin;KIM, Young-Kyoon;KIM, Yeong-Suk;KIM, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.692-699
    • /
    • 2019
  • Elizabethkingia miricola BM10, a symbiotic bacterium, has been isolated from the hindgut of Reticulitermes speratus KMT001, a termite which occurs on Bukhan Mountain in Seoul, Korea. This strain demonstrated a symbiotic characteristic, in that it lacked endo-${\beta}$-1,4-glucanase activity, in a previous study. The major fatty acids of E. miricola BM10 were iso-$C_{15:0}$, iso-$C_{17:0}$ 3-OH, and summed feature 3 (iso-$C_{16:1}{\omega}7c/C_{16:1}{\omega}6c$). The content of iso-$C_{17:0}$ 3-OH was higher, while those of ECL 13.566, iso-$C_{17:11}{\omega}9c$, and summed feature 4 were lower than the other three type-strains of the Elizabethkingia genus. The 16S rRNA phylogenetic analysis confirmed that E. miricola BM10 is a new species. The whole genome of E. miricola BM10 was sequenced. The average nucleotide identity of strain BM10 as evaluated by pairwise comparison with E. anophelis R26, E. meningoseptica ATCC 13253, and E. miricola GTC 862 was shown to be 91.5%, 81.2%, and 94.29%, respectively. Based on our study results, E. miricola BM10 appears to represent a new strain of the genus Elizabethkingia.

Characterization of Low-Temperature Enzymatic Reactions through Heterologous Expression and Functional Analysis of Two Beta-Glucosidases from the Termite Symbiotic Bacterium Elizabethkingia miricola Strain BM10

  • Dongmin LEE;Tae-Jong KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.270-282
    • /
    • 2023
  • Lower termites need symbiotic microbes for cellulose digestion. Elizabethkingia miricola strain BM10 has been proposed as a symbiotic microbe that assists in low-temperature digestion and metabolism of Reticulitermes speratus KMT1, a termite on Bukhan Mountain, Seoul, Korea. In E. miricola strain BM10, β-glucosidase genes expressed at 10℃ were identified, and the psychrophilic enzymatic characteristic was confirmed by heterogeneously expressed proteins. Crude β-glucosidase in the culture broth of E. miricola strain BM10 showed specific enzymatic properties, and its substrate affinity was 4.69 times higher than that of Cellic CTec2. Among the genes proposed as β-glucosidase, two genes, bglB_1 and bglA_2, whose gene expression was more than doubled at 10℃ than at 30℃, were identified. They were heterogeneously expressed in Escherichia coli and identified as psychrophilic enzymes with an optimal reaction temperature of about 20℃-25℃. In this study, E. miricola strain BM10, a symbiotic bacterium of lower termites, produced psychrophilic β-glucosidases that contribute to the spread of the low-temperature habitat of a lower termite, R. speratus KMT1.