• Title/Summary/Keyword: Eliminate technology gap

Search Result 15, Processing Time 0.02 seconds

Reversible Data Hiding Scheme Based on Maximum Histogram Gap of Image Blocks

  • Arabzadeh, Mohammad;Rahimi, Mohammad Reza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.8
    • /
    • pp.1964-1981
    • /
    • 2012
  • In this paper a reversible data hiding scheme based on histogram shifting of host image blocks is presented. This method attempts to use full available capacity for data embedding by dividing the image into non-overlapping blocks. Applying histogram shifting to each block requires that extra information to be saved as overhead data for each block. This extra information (overhead or bookkeeping information) is used in order to extract payload and recover the block to its original state. A method to eliminate the need for this extra information is also introduced. This method uses maximum gap that exists between histogram bins for finding the value of pixels that was used for embedding in sender side. Experimental results show that the proposed method provides higher embedding capacity than the original reversible data hiding based on histogram shifting method and its improved versions in the current literature while it maintains the quality of marked image at an acceptable level.

Study of Harmonic Suppression of Ship Electric Propulsion Systems

  • Wang, Yifei;Yuan, Youxin;Chen, Jing
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1303-1314
    • /
    • 2019
  • This paper studies the harmonic characteristics of ship electric propulsion systems and their treatment methods. It also adopts effective measures to suppress and prevent ship power systems from affecting ship operation due to the serious damage caused by harmonics. Firstly, the harmonic characteristics of a ship electric propulsion system are reviewed and discussed. Secondly, aiming at problems such as resonant frequency and filter characteristics variations, resonance point migration, and unstable filtering performances in conventional passive filters, a method for fully tuning of a passive dynamic tunable filter (PDTF) is proposed to realize harmonic suppression. Thirdly, to address the problems of the uncontrollable inductance L of traditional air gap iron core reactors and the harmonics of power electronic impedance converters (PEICs), this paper proposes an electromagnetic coupling reactor with impedance transformation and harmonic suppression characteristics (ECRITHS), with the internal filter (IF) designed to suppress the harmonics generated by PEICs. The ECRITHS is characterized by both harmonic suppression and impedance change. Fourthly, the ECRITHS is investigated. This investigation includes the harmonic suppression characteristics and impedance transformation characteristics of the ECRITHS at the fundamental frequency, which shows the good performance of the ECRITHS. Simulation and experimental evaluations of the PDTF are carried out. Multiple PDTFs can be configured to realize multi-order simultaneous dynamic filtering, and can effectively eliminate the current harmonics of ship electric propulsion systems. This is done to reduce the total harmonic distortion (THD) of the supply currents to well below the 5% limit imposed by the IEEE-519 standard. The PDTF also can eliminate harmonic currents in different geographic places by using a low voltage distribution system. Finally, a detailed discussion is presented, with challenges and future implications discussed. The research results are intended to effectively eliminate the harmonics of ship electric power propulsion systems and to improve the power quality of ship power systems. This is of theoretical and practical significance for improving the power quality and power savings of ship power systems.

Wall slip of vaseline in steady shear rheometry

  • Song, Ki-Won;Chang, Gap-Shik;Koo, Ja-Seung
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2003
  • The steady shear flow properties of vaseline generally used as a base of the pharmaceutical dosage forms were studied in the consideration of wall slip phenomenon. The purpose of this study was to show that how slip may affect the experimental steady-state flow curves of semisolid ointment bases and to discuss the ways to eliminate (or minimize) wall slip effect in a rotational rheometer. Using both a strain-controlled ARES rheometer and a stress-controlled AR1000 rheometer, the steady shear flow behavior was investigated with various experimental conditions ; the surface roughness, sample preparation, plate diameter, gap size, shearing time, and loading methods were varied. A stress-controlled rheometer was suitable for investigating the flow behavior of semisolid ointment bases which show severe wall slip effects. In the conditions of parallel plates attached with sand paper, treated sample, smaller diameter fixture, larger gap size, shorter shearing time, and normal force control loading method, the wall slip effects could be minimized. A critical shear stress for the onset of slip was extended to above 10,000 dyne/$\textrm{cm}^2$. The wall slip effects could not be perfectly eliminated by any experimental conditions. However, the slip was delayed to higher value of shear stress by selecting proper fixture properties and experimental conditions.

An Analysis of ICT education status and Policy Proposals for the enhancement of female ability in developing countries - focused on UHP in Indonesia (개발도상국의 여성능력향상을 위한 ICT교육현황분석 및 정책 제언 - 인도네시아 UHP 대학을 중심으로)

  • Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.285-292
    • /
    • 2018
  • Though the latest ICT technology is expected to serve as a bridgehead for future industrial development as the core of the 4th Industrial Revolution, the gap in ICT technology is still directly connected to the disparity in wealth and it is widening. Training to foster female ICT capabilities in developing countries is an opportunity to foster quality workforce for national development and a means to close the technology gap. The study aims to investigate the status of infrastructure and ICT education at UHP University in Indonesia, as a preparation for educating students in developing countries with ICT skills. Based on this survey, we develop appropriate ICT education contents for female students and provide necessary policies for ongoing education. We will seek ways to improve efficiency in education by comparing and analyzing the results of the previous research, Life University survey.

A Novel Cogging Torque Reduction Method for Single-Phase Brushless DC Motor

  • Park, Young-Un;Cho, Ju-Hee;Rhyu, Se-Hyun;Kim, Dae-Kyong
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.117-124
    • /
    • 2013
  • Single-phase, brushless DC (BLDC) motors have unequal air-gaps to eliminate the dead-point where the developed torque is zero. Unfortunately, these unequal air-gaps can deteriorate the motor characteristics in the cogging torque. This paper proposes a novel design for a single-phase BLDC motor with an asymmetric notch to solve this problem. In the design method, the asymmetric notches were placed on the stator pole face, which affects the change in permanent magnet shape or the residual flux density of the permanent magnet. Parametric analysis was performed to determine the optimal size and position of the asymmetric notch to reduce the cogging torque. Finite element analysis (FEA) was used to calculate the cogging torque. A more than 28% lower cogging torque compared to the initial model with no notch was achieved.

Design and Analysis of a High Speed Single-phase Hybrid 4/4 poles SRM for Hammer Beaker Application

  • Jeong, Kwang-Il;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1978-1985
    • /
    • 2018
  • In this paper, a novel single-phase hybrid switched reluctance motor (HSRM) is proposed for hammer breaker application. The hammer breaker requires only unidirectional rotation and high-speed operation. To satisfy the requirements and eliminate torque dead-zone, the rotor of the proposed 4/4 poles SRM is designed with wider pole arc and non-uniform air-gap. This motor has a simple structure and produces low torque ripple. Permanent magnets (PMs) are mounted on the inner stator at a certain position which enables it to park the rotor for self-start and create positive cogging torque in the torque dead-zone. Compared with conventional single-phase switched reluctance motor, HSRM has an increased torque density and relatively low torque ripple. To verify effectiveness, finite element method (FEM) is employed to analyze the performance of the proposed structure. Then, the proposed motor is compared with the existing motor drive system for the same application. The proposed HSRM is easy to manufacture along with competitive performance.

Study on Gender Pay Gap of Scienceand Engineering Labor Force (과학기술인력의 성별 임금격차에 관한 연구)

  • Shim, Jung-Min;Park, Jin-Woo;Cho, Keun-Tae
    • Journal of Technology Innovation
    • /
    • v.22 no.1
    • /
    • pp.89-117
    • /
    • 2014
  • Employing female in the field of science and engineering is becoming increasingly important with diversity and creativity emerging as key factors to build Creative Economy. Under these circumstances, it is necessary to recognize and discourage gender discrimination in the labor market by analyzing wages - the market value of labor which determines one's economic status. This study uses the Oaxaca-Ransom decomposition (1994) to analyze the gender wage gap and identify factors influencing the pay gap in science and engineering labor force. The results of this study are as follows: First, the average wage of female scientists and engineers reaches only 65% of that of male labor force, and the male scientist and engineers are superior in terms of personal attributes, for instance, education background. Second, looking at the factors that influence wages, wage premiums are associated with higher education background, older age, longer period of service, and weekly working hours for both male and female in managerial positions. Third, the wage decomposition shows that in the case of science and engineering labor force, the productivity difference by personal attributes reaches about 58%, and gender discrimination by the characteristics of the labor market stands at about 41%. This means the wage gap by productivity level in science and engineering labor force is wider, and the gender gap is smaller compared to non-science and engineering fields. However, the results of an analysis on specialties and education background of male and female scientists and engineers suggest that the discrimination against women is more serious when the percentage of the female labor force is low and the percentage of temporary workers in the labor market is high. In order to eliminate this discrimination, it is necessary to reduce the imbalance of female scientists and engineers in the labor market, among others, while female scientists and engineers, themselves, need to make continuous efforts to strengthen their capabilities.

Cogging Torque Reduction in Line Start Permanent Magnet Synchronous Motor

  • Behbahanifard, Hamidreza;Sadoughi, Alireza
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.878-888
    • /
    • 2016
  • Cogging torque has a negative impact on the operation of permanent magnet machines by increasing torque ripple, speed ripple, acoustic noise and vibration. In this paper Magnet Shifting Method has been used as a tool to reduce the cogging torque in inset Line Start Permanent Magnet Synchronous Motor (LSPMSM). It has been shown that Magnet Shifting Method can effectively eliminate several lower-order harmonics of cogging torque. In order to implement the method, first the expression of cogging torque is studied based on the Fourier analysis. An analytical expression is then introduced based on Permanent Magnet Shifting to reduce cogging torque of LSPMS motors. The method is applied to some existing machine designs and their performances are obtained using Finite Element Analysis (FEA). The effect of magnet shifting on pole mmf (magneto motive force) distribution in air gap is discussed. The side effects of magnet shifting on back-EMF, core losses and torque profile distortion are taken into account in this investigation. Finally the experimental results on two prototypes 24 slot 4 pole inset LSPMS motors have been used to validate the theoretical analysis.

A Method of Hole Pass-Through Evaluation for EDM Drilling (방전드릴링에서 홀 관통 평가 방법)

  • Lee, Cheol-Soo;Choi, In-Hugh;Heo, Eun-Young;Kim, Jong-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.220-226
    • /
    • 2012
  • The Electric discharge machining (EDM) process is used to minimize the difference between designed feature and machined feature while the most workpiece is removed through the cutting processes. The tiny-deep hole machining and perpendicular wall machining in mold and die are good applications of EDM. Among EDM equipment, the super drill uses the hollowed electrode to eliminate the debris which causes the second discharge with the electrode and degrades the machining quality. Through the hollow, the high pressured discharge oil is supplied to remove the debris together with the spindle rotation. The thin-hollow electrode tends to easily wear out compared to the sold die-sinking electrode and its wear rate is might not allowed to monitor in real time during discharging. Up to now, the wear amount is measured by off line method, which leads machining time to increase because the hole pass-through moment can be check by visual (manually) with the extra tool path. Therefore, this study suggests the attractive method to evaluate the hole pass-through moment in which the gap voltage and z-axis encoder pulse are monitored to predict the moment. The commercial super drill is used to validate the proposed method and the experiment is carried out.

Process Design on Fabrication of Large Sized Ring by Mandrel Forging of Hollow Cast Ingot (중공 잉곳을 이용한 대형 링 단조품 제조공정 설계 연구)

  • Lee, S.U.;Lee, Y.S.;Lee, M.W.;Lee, D.H.;Kim, S.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.329-336
    • /
    • 2010
  • Ring forging process is more appropriate for high-length and thin walled ring, because it utilizes the forging press and hence does not require heavy-duty ring rolling mill. Although ring forging process is very simple and economic for facilities, the process is not efficient because of multi-forging-step and low material utilization. An effective ring forging process is developed using a hollow ingot. When a hollow ingot is used with a workpiece, the ingot can be forged into a final ring without multi-stage pre-forging process, such as, cogging, upsetting, and piercing, etc.. Finally it has advantages of the material utilization and process improvement because a few reheating and forging process are not necessary to make workpiece for ring forging. The important design variables are the applied plastic deformation energy to eliminate cast structure and make uniform properties. In this study, the mechanical properties after forging of hollow cast ingot were investigated from the experiment using circumferential sectional model. Also, the effects of process variables were studied by FEM simulation on the basis of thermo-visco-plastic constitutive equation. Applied strain is different at each position in length direction because diameter of hollow ingot is different in length direction. The different strain distribution become into a narrow gap by additional plastic deformation during diameter extension process.