• Title/Summary/Keyword: Elevated Temperature Structure

Search Result 148, Processing Time 0.025 seconds

Plastic Deformation Behavior of Al-Mg-Si Alloys at the Elevated Temperatures (Al-Mg-Si 합금의 고온 소성 변형 거동)

  • 권용남;이영선;이정환
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • Thermomechanical behavior of Al-Mg-Si alloys was studied to investigate the effect of microstructural features such as pre-existing substructure and distribution of particles on the deformation characteristics. The controlled compression tests were carried out to get the information on how the alloy responds to temperature, strain amount and strain rate. Then hot forging of Al-Mg-Si alloys carried out and analyzed by the comparison with the compression tests. Microstructural features after forging were discussed in terms of the thermomechanical response of Al-Mg-Si alloys. As already well mentioned, we found that the deformation of Al-Mg-Si at the elevated temperature brought the recovered structure on most conditions. In a certain time, however, abnormally large grains were found as a result of deformation assisted grain growth, which means that hot forging of Al-Mg-Si alloys could lead to a undesirable microstructural variation and the consequent mechanical properties such as fatigue strength.

Oxidation Study on the Fabrication of Fe-36Ni Oxide Powder from Its Scrap

  • Yun, Jung Yeul;Park, Man Ho;Yang, Sangsun;Lee, Dong-Won;Wang, Jei-Pil
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.48-52
    • /
    • 2013
  • A study of oxidation kinetic of Fe-36Ni alloy has been investigated using thermogravimetric apparatus (TGA) in an attempt to define the basic mechanism over a range of temperature of 400 to $1000^{\circ}C$ and finally to fabricate its powder. The oxidation rate was increased with increasing temperature and oxidation behavior of the alloy followed a parabolic rate law at elevated temperature. Temperature dependence of the reaction rate was determined with Arrhenius-type equation and activation energy was calculated to be 106.49 kJ/mol. Based on the kinetic data and micro-structure examination, oxidation mechanism was revealed that iron ions and electrons might migrate outward along grain boundaries and oxygen anion diffused inward through a spinel structure, $(Ni,Fe)_3O_4$.

Effects of Ca/Si Molar Ratio on the Interatomic Distance of Synthetic Calcium Silicate Hydrate (C-S-H) at Elevated Temperature (고온 가열시 Ca/Si 몰비율에 따른 합성 칼슘 실리케이트 수화물(C-S-H)의 구성 원자간 거리 변화)

  • Im, Su-Min;Bae, Sung Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.144-145
    • /
    • 2021
  • Calcium silicate hydrate(C-S-H) is the principal binding phase that controls the strength and thermal stability of concrete. However, the effects of high temperature on the lattice structure and interatomic structure of C-S-H remains poorly understood due to its nanocrystallinity. This study aims to elucidate the change in interatomic distance of synthetic C-S-H with different Ca/Si molar ratios after exposure to high temperature via high energy X-ray scattering experiment which is a powerful analytical tool for amorphous materials.

  • PDF

Proposed Approaches on Durability Enhancement of Small Structure fabricated on Camera Lens Surface (카메라 렌즈 표면에 형성된 미세 패턴의 내구성 향상 기법 제안)

  • Park, Hong Ju;Choi, In Beom;Kim, Doo-In;Jeong, Myung Yung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.467-473
    • /
    • 2019
  • In this study, approached to improve durability of the multi-functional nano-pattern fabricated on the curved lens surface using nanoimprint lithography (NIL) was proposed, and the effects of the proposed methods on functionality after wear test were examined. To improve the mechanical property of ultraviolet(UV)-curable resin, UV-NIL was conducted at the elevated temperature around $60^{\circ}C$. In addition, micro/nano hierarchical structures was fabricated on the lens surface with a durable film mold. Analysis on the worn surfaces of nano-hole pattern and hierarchical structures and measurements on the static water contact angle and critical water volume for roll-off indicated that the UV curing process with elevated temperature is effective to maintain wettability by increasing hardness of resin. Also, it was found that the micro-scale pattern is effective to protect nano-pattern from damage during wear test.

Thermal expansion and Shrinkage of concrete and Steel bar (고층에서의 콘크리트와 철근의 팽창 및 수축)

  • 오창희;김화중
    • Fire Science and Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-20
    • /
    • 1988
  • The success of analyzing the behavior of reinforced concrete structures at elevated temperature greatly depends on how accurately certain thermal properties, especially thermal expansion, specific heat and density thermal conductivity can be determined in a wide temperature range. In this Paper, in order to Predict the behavior of reinforced concrete structure in fire hazards thermal expansion characteristics of normal concrete are formulated through experimental investigation.

  • PDF

High operating temperature stable OLEDs with reduced reflectivity cathodes

  • Popovic, Zoran D.;Aziz, Hany;Vamvounis, George;Hu, Nan-Xing;Paine, Tony
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.21-24
    • /
    • 2003
  • The understanding of the mechanism of device degradation has been accomplished recently, for devices using $AlQ_3$ electron transport and emitter molecule. In this presentation the experimental evidence for the degradation mechanism of $AlQ_3$ based devices will be reviewed, showing that the hypothesis of an unstable $AlQ_3^+$ cation explains a large amount of experimental data. This hypothesis, however, explains not only the room temperature device degradation in time but also sheds light on temperature stability of OLEDs. Dependence of half-life of a series of devices with an emitter layer composed of a mixture of $AlQ_3$ and different hole transport molecules (mixed emitter layer) will be discussed when they are operated at elevated temperatures. These results can also be explained in the framework of an unstable $AlQ_3^+$ species. An OLED structure containing a doped mixed emitter layer will be described, which shows extraordinary stability, half-life of 1200 hours at operating temperature of 70 C and initial luminance of 1650 $cd/m^2$. We will also discuss a novel Black $Cathode^{TM}$ OLED with reduced optical reflectivity, which is also stable at elevated temperatures. The new cathode utilizes a conductive light-absorbing layer made of a mixture of metals and organic materials.

  • PDF

Behaviour of steel joints under fire loading

  • da Silva, Luis Simoes;Santiago, Aldina;Real, Paulo Vila;Moore, David
    • Steel and Composite Structures
    • /
    • v.5 no.6
    • /
    • pp.485-513
    • /
    • 2005
  • This paper presents a state-of-the-art on the behaviour of steel joints under fire loading and some recent developments in this field, currently being carried out by the authors. Firstly, a review of the experimental research work on steel joints is presented, subdivided into isolated member tests, sub-structure tests and tests on complete building structures. Special emphasis is placed on the seventh Cardington test, carried out by the authors within a collaborative research project led by the Czech Technical University in Prague. Secondly, a brief review of various temperature distributions within a joint is presented, followed by a discussion of the behaviour of isolated joints at elevated temperature, focussing on failure modes and analytical procedures for predicting the moment-rotation behaviour of joints at elevated temperature. Finally, a description of the coupled behaviour of joints as part of complete structures is presented, describing previous work and investigations on real fire (including heating and cooling phases) currently being carried out by the authors.

Crystal structure of the pretense domain of an ATP-independent heat shock protease HtrA

  • Kim, Dong-Young;Kim, Dong-Ryoung;Ha, Sung-Chul;Neratur K.Lokanath;Hwang, Hye-Yeon;Kim, Kyeong-Kyu
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.24-24
    • /
    • 2002
  • HtrA (high temperature requirement A), a periplasmic heat shock protein, is known to have molecular chaperone function at low temperatures and proteolytic activity at elevated temperatures. To investigate the mechanism of functional switch to pretense, we have determined the crystal structure of the N-terminal protease domain (PD) of HtrA from Thermotoga maritima. HtrA PD shares the same fold with chymotrypsin-like serine professes. However, crystal structure suggests that HtrA PD is not an active pretense at current state since its active site is not formed properly and blocked by an additional helical lid. On the surface of the lid, HtrA PD has hydrophobic patches that could be potential substrate binding sites for molecular chaperone activity. Present structure suggests that the activation of the proteolytic function of HtrA PD at elevated temperatures might occur by the conformational change.

  • PDF

A Study on HEMT Device Process (Part I. Lift-off Process for the Metallization) (HEMT 소자 공정 연구 (Part 1. 금속박막 형성을 위한 Lift-off 공정연구))

  • 이종람;박성호;김진섭;마동성
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1535-1544
    • /
    • 1989
  • The overhang structure of photoresist in optical lithography was studied for the metallization of GaAs-related devices throughout lift-off method. Optical contact aligner with a dose of 8.5 m J/cm\ulcornerand with a wavelength of 300mm was used for ultraviolet exposure of single layer of S1400-27 photoresist. The overhang thickness shows a linear relationship with the soaking time in monochlorobenzene, which its magnitude becomes high at elevated softbake temperature. Such process conditions as a low softbake temperature, a long monochlorohbenzene soaking time and a little exposed energy make the development rate of photoresist lower. The optimum process conditions to obtain a target line-width, which include an appropriate overhang structure such as complete separation between the sidewall of photoresist pattern and the deposited metal edge, are determined as the softbake temperature of 64-74\ulcornerC, the monochlorobenzene soaking time of 10-15min, the ultraviolet exposure time of 70-100sec and the development time of 50-80sec.

  • PDF

Thermal stress of concrete structure at high temperature considering inelastic thermal strain change (고온에서의 비선형 변형도를 고려한 콘크리트 구조물에서의 열응력 분포)

  • 강석원;홍성걸;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1145-1150
    • /
    • 2000
  • Concrete behaves as ductile material at high temperature. The existing stress-strain relationship is not valid at high temperature condition. Thus, stress-strain curve of concrete at high temperature is re-established by modifying Saenz's suggestion in this study. A constitutive model of concrete subjected to elevated temperature is also suggested. The model consists of three components; free thermal stain, mechanical strain and thermal creep strain. As the temperature increase, the thermal creep becomes more critical to the failure of concrete. The thermal creep strain of concrete is derived from the modified power-law relation for the steady state creep. The proposed equation for thermal creep employs a Dorn's temperature compensated time theorem

  • PDF