• Title/Summary/Keyword: Element transport

Search Result 414, Processing Time 0.03 seconds

The effect of non-uniform current distribution on transport current loss in stacked high-Tc superconductor tapes

  • Choi, Se-Yong;Nah, Wan-Soo;Joo, Jin-Ho;Ryu, Kyung-Woo;Lee, Byoung-Seob;Yoon, Jang-Hee;Ok, Jung-Woo;Park, Jin-Yong;Won, Mi-Sook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.16-19
    • /
    • 2012
  • The influence of current distribution on the transport current loss in vertically stacked high-$T_c$ superconductor (HTS) tapes was evaluated. AC loss was analyzed as a function of current distribution by introducing a current distribution parameter through a numerical method (finite element analysis). AC loss under non-uniform current distribution is always higher than that for a uniformly distributed transport current in a conductor. Although the effect of non-uniformity is relatively insignificant in low transport current, AC loss increases substantially in high transport current regions as non-uniformity is enlarged. The results verify that non-uniform current distribution causes extra loss by examining the cross-sectional view of current densities in stacked conductor.

A TWO-DIMENSIONAL FINITE VOLUME METHOD FOR TRANSIENT SIMULATION OF TIME- AND SCALE-DEPENDENT TRANSPORT IN HETEROGENEOUS AQUIFER SYSTEMS

  • Liu, F.;Turner, I.;Ahn, V.;Su, N.
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.215-241
    • /
    • 2003
  • In this paper, solute transport in heterogeneous aquifers using a modified Fokker-Planck equation (MFPE) is investigated. This newly developed mathematical model is characterised with a time-, scale-dependent dispersivity. A two-dimensional finite volume quadrilateral mesh method (FVQMM) based on a quadrilateral background interpolation mesh is developed for analysing the model. The FVQMM transforms the coupled non-linear partial differential equations into a system of differential equations, which is solved using backward differentiation formulae of order one through five in order to advance the solution in time. Three examples are presented to demonstrate the model verification and utility. Henry's classic benchmark problem is used to show that the MFPE captures significant features of transport phenomena in heterogeneous porous media including enhanced transport of salt in the upper layer due to its parameters that represent the dependence of transport processes on scale and time. The time and scale effects are investigated. Numerical results are compared with published results on the some problems.

AERODYNAMIC OPTIMIZATION OF MULTI-ELEMENT AIRFOILS FOR LIFT ENHANCEMENT (다중 익형 주위의 고양력을 위한 위치 최적화)

  • Lee, Dae-Il;Choi, Byung-Chul;Park, Young-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.441-446
    • /
    • 2011
  • To investigate aerodynamic performance of high-lift devices, 2D design is the base of the success of high-lift system design for transport aircraft, which can shorten the periods of three-dimensional design and analysis. For the simulation coupled viscous and inviscous euler method (MSES) is used. In this parametric study, Gap and Overlap which can define position of flap is used as design variables and we investigale relation between angle of attack and flap position for lift enhancement.

  • PDF

Safety and Health Perceptions in Work-related Transport Activities in Ghanaian Industries

  • Atombo, Charles;Wu, Chaozhong;Tettehfio, Emmanuel O.;Nyamuame, Godwin Y.;Agbo, Aaron A.
    • Safety and Health at Work
    • /
    • v.8 no.2
    • /
    • pp.175-182
    • /
    • 2017
  • Background: With the recent rapid industrialization, occupational safety and health (OSH) has become an important issue in all industrial and human activities. However, incidents of injuries and fatality rates in the Ghanaian industry sector continue to increase. Despite this increase, there is no evidence regarding the element of OSH management in transport activities in Ghanaian industries. Thus, this study aims to examine the perceptions regarding the importance of safety and health in work-related transport activities in Ghanaian industries. Methods: A survey data collection technique was used to gather information on best safety practices over a 5-month period. We randomly selected 298 respondents from industries to answer structured questionnaires. The respondents included drivers, transport managers, and safety engineers. Standard multiple regression model and Pearson product-movement correlation were used to performed the analysis. Results: The result shows that for interventions to improve safety and health, concentration has been on drivers' safety practice with less attention to safe driving environments and vehicle usage. Additionally, the respondents are aware of the importance of OSH in transport activities, but the level of integration does not measure up to the standard to reduce operational accidents and injuries. Finally, strong commitment to changing unsafe practices at all levels of operations appears to be the effective way to improve safety situations. Conclusion: OSH culture is not fully complied in industries transport activities. This study, therefore, supports the use of safety seminars and training sessions for industry workers responsible for transport operations for better integration of safety standards.

Control of axial segregation by the modification of crucible geometry

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.191-194
    • /
    • 2008
  • We will focus on the horizontal Bridgman growth system to analyze the transport phenomena numerically, because the simple furnace system and the confined growth environment allow for the precise understanding of the transport phenomena in solidification process. In conventional melt growth process, the dopant concentration tends to vary significantly along the crystal. In this work, we propose the modification of crucible geometry for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution. Numerical analysis has been performed to study the transport phenomena of dopant impurities in conventional and proposed Bridgman silicon growth using the finite element method and implicit Euler time integration. It has been demonstrated using mathematical models and by numerical analysis that proposed method is useful for obtaining crystals with superior uniformity along the growth direction at a lower cost than can be obtained by the conventional melt growth process.

Development of an Accurate Numerical Model for Density-Dependent Groundwater Flow and Solute Transport (밀도가 변하는 지하수흐름과 용질의 수송을 위한 정확한 수치모델의 개발)

  • Park, Nam-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.753-759
    • /
    • 1997
  • A new numerical model was doveloped to simulate density-dependent ground water flow and solute transport. Accuracy of a numerical model depends upon how well it simulates advection dominant situations because numerical oscillations can spoil solutions for these situations. Nonlinear oscillation-absorption finite element method. based on the variational principle, was employed. Unlike previous numerical models, this model can easily be expanded for more complex situations. Accuracy of the model is evaluated by comparing with analytical solutions and results of other numerical model.

  • PDF

The Seasonal Variation of the Heat Budget in Deukryang Bay (득량만의 열수지 계절 변동)

  • 주용환;조규대
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.67-73
    • /
    • 1998
  • Surface heat budget of the Deukryang Bay from July 1, 1992 to September 12, 1993 is analyzed by us- ing the meteorological data (by Changhung Observatory and Mokpo Meteorological Station) and oceanogaphical data (by Research Center for Ocean Industrial Development. Pukyong National University). Each flux element at the sea surface which has annual variation Is derived with application of an aerodynamical bulk method and empirical formulae. The solar radiation Is the maximum In spring and sensible heat are the maximum in autumn and water. and minimum in summer The heat .storage rate is calclilated by using the rate of water temperature variation according to the depth. The oceanic transport heat is estimated as a residual. The net heat flux, the heat storage rate are positive In spring and summer, while they are negative in autumn and winter. The oceanic transport heat Is convergence In winter and divergence In the rest of seasons.

  • PDF

Simulation of transport phenomena in porous membrane evaporators using computational fluid dynamics

  • Mohammadi, Mehrnoush;Marjani, Azam;Asadollahzadeh, Mehdi;Hemmati, Alireza;Kazemi, Seyyed Masoud
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.87-100
    • /
    • 2016
  • A numerical simulation of membrane evaporation process was carried out in this work. The aim of simulation is to describe transport of water through porous membranes applicable to the concentration of aqueous solutions. A three-dimensional mathematical model was developed which considers transport phenomena including mass, heat, and momentum transfer in membrane evaporation process. The equations of model were then solved numerically using finite element method. The results of simulation in terms of evaporation flux were compared with experimental data, and confirmed the accuracy of model. Moreover, profile of pressure, concentration, and heat flux were obtained and analyzed. The results revealed that developed 3D model is capable of predicting performance of membrane evaporators in concentration of aqueous solutions.

Upwind Finite Element Model for Suspended Sediment Transport

  • Noh, Joon-Woo
    • Journal of Wetlands Research
    • /
    • v.5 no.1
    • /
    • pp.67-78
    • /
    • 2003
  • The unsteady 2D convection and diffusion equation is solved numerically for the real-time simulation of suspended load propagation. The streamlined upwind scheme efficiently reduces numerical oscillations due to the high Peclet number in the convection dominant flow. By using the mixed boundary condition to express the external source terms or externally induced suspended load as a function of time in the algorithm, the model is capable of handling not only continuous load cases but also non-continuous suspended load influx. The suspended load transport modelwas verified using a case study for which an analytical exact solution is available and was applied to the real-time simulation of a suspended load influx case on the Mississippi River. The model algorithm can provide a framework upon which water quality as well as contaminant transport models can be built.

  • PDF

Numerical modelling of contaminant transport using FEM and meshfree method

  • Satavalekar, Rupali S.;Sawant, Vishwas A.
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.117-129
    • /
    • 2014
  • Groundwater contamination is seeking a lot of attention due to constant degradation of water by landfills and waste lagoons. In many cases heterogeneous soil system is encountered and hence, a finite element model is developed to solve the advection-dispersion equation for layered soil system as FEM is a robust tool for modelling problems of heterogeneity and complex geometries. Recently developed Meshfree methods have advantage of eliminating the mesh and construct approximate solutions and are observed that they perform effectively as compared to conventional FEM. In the present study, both FEM and Meshfree method are used to simulate phenomenon of contaminant transport in one dimension. The results obtained are agreeing with the values in literature and hence the model is further used for predicting the transport of contaminants. Parametric study is done by changing the dispersion coefficient, average velocity, geochemical reactions, height of leachate and height of liner for obtaining suitability.