• Title/Summary/Keyword: Element simulation

Search Result 4,576, Processing Time 0.026 seconds

Numerical Simulation of the Delamination Behavior of Polymeric Adhesive Tapes Using Cohesive Zone Element (응집 영역 요소를 이용한 고분자 접착 테이프의 박리거동 모사)

  • Jang, Jinhyeok;Sung, Minchang;Yu, Woong-Ryeol
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.203-208
    • /
    • 2016
  • Metal and polymer sandwich composites, which are made of sheet metal sheath and polymer or fiber reinforced plastic core, have been reconsidered as an alternative to sheet metal due to their lightness and multifunctional properties such as damping and sound-proof properties. For the successful applications of these composites, the delamination prediction based on the adhesion strength is important element. In this study, the numerical simulation of the delamination behavior of polymeric adhesive tapes with metallic surfaces was performed using cohesive zone elements and finite element software. The traction-separation law of the cohesive zone element was defined using the fracture energy derived from peel mechanics and experimental results from peel test and implemented in finite element software. The peel test of the polymeric adhesive film against steel surface was simulated and compared with experiments, demonstrating reasonable agreement between simulation and experiment.

Validation of Efficient Welding Technique to Reduce Welding Displacements of Ships using the Elastic Finite Element Method

  • Woo, Donghan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.254-261
    • /
    • 2020
  • Welding is the most convenient method for fabricating steel materials to build ships and of shore structures. However, welding using high heat processes inevitably produces welding displacements on welded structures. To mitigate these, heavy industries introduce various welding techniques such as back-step welding and skip-step welding. These techniques effect on the change of the distribution of high heat on welded structures, leading to a reduction of welding displacements. In the present study, various cases using different and newly introduced welding techniques are numerically simulated to ascertain the most efficient technique to minimize welding displacements. A numerical simulation using a finite element method based on the inherent strain, interface element and multi-point constraint function is introduced herein. Based on several simulation results, the optimal welding technique for minimizing welding displacements to build a general ship grillage structure is finally proposed.

Prediction of Tool Wear in Shearing Process by the Finite Element Method (유한요소법에 의한 전단가공 금형의 마멸예측)

  • Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.174-181
    • /
    • 1999
  • In this paper the technique to predict tool wear theoretically in shearing process is suggested. The tool wear in the process affects the tolerances of final pans, metal flows and costs of processes. In order to predict the tool wear the deformation of workpiece during the process is analyzed by using non-isothermal finite element program. The ductile fracture criterion and the element kill method are also used to estimate if and where a fracture will occur and to investigate the features of the sheared surface in shearing process. Results obtained from finite element simulation, such as nodal velocities and nodal forces, are transformed into sliding velocity and normal pressure on tool monitoring points respectively. The monitoring points are automatically generated and the wear rates on these points are accumulated during the process. It is assumed that the wear depth on the tool surface is linear function of the lot sizes based upon the known experimental results. The influence of clearance between die and punch upon tool wear is also discussed.

  • PDF

Process Design in Coining by Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Method (강-소성 유한요소법의 3차원 역추적 기법을 적용한 코이닝 공정설계)

  • 최한호;변상규;강범수
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.408-415
    • /
    • 1997
  • The backward tracing scheme of the finite element analysis, which is counted to be unique and useful for process design in metal forming, has been developed and applied successfully in industry to several metal forming processes. Here the backward tracing scheme is implemented for process design of three-dimensional plastic deformation in metal forming, and it is applied to a precision coining process. The contact problem between the die and workpiece has been treated carefully during backward tracing simulation in three-dimensional deformation. The results confirm that the application of the developed program implemented with backward tracing scheme of the rigid plastic finite element leads to a reasonable initial piercing hole configuration. It is concluded that three-dimensional extension of the scheme appears to be successful for industrial applications.

  • PDF

Characteristic Simulation of PM-Type Magnetic Circuit Breaker

  • Park, Han-Seok;Jung, Hong-Sub;Woo, Kyung-il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1279-1285
    • /
    • 2004
  • This paper presents the characteristic simulation of PM-type magnetic circuit breaker with the 2D finite element magnetic field solution including non-linearity of the material and an eddy current. Change of dynamic characteristic of the actuator is quantified from the finite element analysis. The results obtained from a commercial finite element analysis software are compared with those calculated from the developed finite element analysis software. A new modified model to decrease the eddy current is proposed. The characteristics of the two models are compared.

Some Remarks on the Experiment and Finite Element Analysis to Evaluate to Forming Limit of Sheet Metals (금속판재의 성형성 평가를 위한 실험 및 유한요소해석에 관한 고찰)

  • 곽인구;신용승;김형종;김헌영
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.379-388
    • /
    • 2000
  • This study aims to examine the influence of experimental and numerical factors on the results of the test and finite element simulation to evaluate the formability of sheet metals. The stretch-forming test with a hemispherical punch is carried out to obtain the limiting dome height (LDH) and forming limit diagram (FLD) for several kinds of aluminium and steel sheet. The results of the LDH and FLD tests are analysed to find any correlation with the uniaxial tensile properties. It proves that the size of the prescribed grid has great influence on the measured value of strain. The finite element analysis of the punch stretching process is also carried out and the result is compared with the experimental data. The influence of the numerical parameters such as friction coefficient, element size and anisotropy model on the simulation results tms out to be very considerable.

  • PDF

Development of Finite Element Tire Model for Vehicle Dynamics Analysis (차량동역학 해석용 타이어 유한요소 모델 개발)

  • Jung, Sung Pil;Lee, Tae Hee;Kim, Gi Whan;Yun, So Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.858-861
    • /
    • 2014
  • This paper presents a simplified finite element tire model for vehicle dynamics analysis. The classical finite element tire model was too big to simulate dynamic properties of the tire. In the simplified model, number of nodes of the tire model was dramatically reduced, and thus its simulation time was several times less than the classical model. Bead, carcass, belt which have an important role to the dynamic characteristics of tire were replaced by simple axis symmetric membrane elements. Also the rebar element was deleted. The tire model has been verified by comparing vertical stiffness data of the simulation model to the test data.

  • PDF

Fatigue Crack Growth Simulation of Arbitrarily Shaped Three Dimensional Cracks Using Finite Element Alternating Method (유한요소 교호법을 이용한 임의 형상의 삼차원 균열의 피로균열 성장 해석)

  • Park, Jai-Hak;Kim, Tae-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.15-20
    • /
    • 2006
  • The finite element alternating method is a convenient and efficient method to analyze three-dimensional cracks embedded in an infinite or a finite body because the method has the property that the uncracked body and cracks can be modeled independently. In this paper the method was applied for fatigue crack growth simulation. A surface crack in a cylinder was considered as an initial crack and the crack configurations and stress intensity factors during the crack growth were obtained. In this paper the finite element alternating method proposed by Nikishkov, Park and Atluri was used after modification. In the method, as the required solution for a crack in an infinite body, the symmetric Galerkin boundary element method formulated by Li and Mear was used. And a crack was modeled as distribution of displacement discontinuities, and the governing equation was formulated as singularity-reduced integral equations.

Comparison of Hybrid Hemming and Roller Hemming Using Finite Element Analysis (유한요소해석을 이용한 하이브리드 헤밍과 롤러 헤밍의 비교)

  • Jo, D.S.;Oh, M.H.;Kim, R.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.119-124
    • /
    • 2021
  • In this study, the hybrid and roller hemming processes of aluminum alloy sheets were compared using the finite element analysis. The aluminum alloy 6014-T4 sheet with a thickness of 1 mm was used for the hemming process. The mechanical properties of the aluminum sheet obtained through a uniaxial tensile test were used for the simulation. The finite element analysis of hybrid and roller hemming was performed using a commercial software (ABAQUS) by the use of the mechanical properties. The finite element simulation results showed that the hybrid hemming holds an advantage over the roller hemming in terms of the dimensional accuracy

Residual Stress Analysis of Rot Rolled Strip in Coiling Process (권취 공정 중 열연 강판의 잔류 응력 해석)

  • 구진모;김홍준;이재곤;황상무
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.302-307
    • /
    • 2003
  • Hot rolled strip is cooled by air and water in Run-Out-Table. In this process, phase transformation and shape deformation occurs due to temperature drop. Because of un-ideal cooling condition of ROT, irregular shape deformation and phase transformation arise in the strip. which affect the strip property and lead to the residual stress of strip. And these exert effects on the following processes, coiling process, coil cooling process, and re-coiling process. Through these processes, the residual stress becomes higher and severe. For the prediction of residual stress distribution and shape deformation of final product, Finite element(FE) based model was used. It consists of non-steady state heat transfer analysis, elasto-plastic analysis. thermodynamic analysis and phase transformation kinetics. Successive FEM simulation were applied from ROT process to coil cooling process. In each process simulation, previous process simulation results were used for the next process simulation. The simulation results were matched well with the experimental results.