• Title/Summary/Keyword: Element group

Search Result 1,213, Processing Time 0.025 seconds

Non-linear analysis of pile groups subjected to lateral loads using 'p-y' curve

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.57-73
    • /
    • 2012
  • The paper presents the analysis of two groups of piles subjected to lateral loads incorporating the non-linear behaviour of soil. The finite element method is adopted for carrying out the parametric study of the pile groups. The pile is idealized as a one dimensional beam element, the pile cap as two dimensional plate elements and the soil as non-linear elastic springs using the p-y curves developed by Georgiadis et al. (1992). Two groups of piles, embedded in a cohesive soil, involving two and three piles in series and parallel arrangement thereof are considered. The response of the pile groups is found to be significantly affected by the parameters such as the spacing between the piles, the number of piles in a group and the orientation of the lateral load. The non-linear response of the system is, further, compared with the one by Chore et al. (2012) obtained by the analysis of a system to the present one, except that the soil is assumed to be linear elastic. From the comparison, it is observed that the non-linearity of soil is found to increase the top displacement of the pile group in the range of 66.4%-145.6%, while decreasing the fixed moments in the range of 2% to 20% and the positive moments in the range of 54% to 57%.

Structural damage detection of steel bridge girder using artificial neural networks and finite element models

  • Hakim, S.J.S.;Razak, H. Abdul
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.367-377
    • /
    • 2013
  • Damage in structures often leads to failure. Thus it is very important to monitor structures for the occurrence of damage. When damage happens in a structure the consequence is a change in its modal parameters such as natural frequencies and mode shapes. Artificial Neural Networks (ANNs) are inspired by human biological neurons and have been applied for damage identification with varied success. Natural frequencies of a structure have a strong effect on damage and are applied as effective input parameters used to train the ANN in this study. The applicability of ANNs as a powerful tool for predicting the severity of damage in a model steel girder bridge is examined in this study. The data required for the ANNs which are in the form of natural frequencies were obtained from numerical modal analysis. By incorporating the training data, ANNs are capable of producing outputs in terms of damage severity using the first five natural frequencies. It has been demonstrated that an ANN trained only with natural frequency data can determine the severity of damage with a 6.8% error. The results shows that ANNs trained with numerically obtained samples have a strong potential for structural damage identification.

PREDICTION OF MICROSTRUCTURE DURING HIGH TEMPERATURE FORMING OF Ti-6Al-4V ALLOY

  • Lee Y. H.;Shin T. J.;Yeom J. T.;Park N. K.;Hong S. S.;Shim I. O.;Hwang S. M.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.43-46
    • /
    • 2003
  • Prediction of final microstructures after high temperature forming of Ti-6Al-4V alloy was attempted in this study. Using two typical microstructures, i.e., equiaxed and $Widmanst\ddot{a}tten$ microstructures, compression test was carried out up to the strain level of 0.6 at various temperatures $(700\~1100^{\circ}C)$ and strain rates $(10^{-4}\~10^2/s)$. From the flow stress-strain data, parameters such as strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equations for both microstructures. Then, finite element analysis was performed to predict the final microstructure of the deformed body, which was well accorded with the experimental results.

  • PDF

Prediction of Die Wear in Extrusion and Wire Drawing (축대칭 압출 및 인발공정 중의 금형마멸예측)

  • Kim, Tae-Hyeong;Kim, Byeong-Min;Choi, Jae-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3031-3037
    • /
    • 1996
  • In cold forming processes, due to high working pressure action on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures into devlop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the forming propcesses that involve cold forward extrusion and wire drawing were simulated by rigid plastic finite element method and its output were used for predicting die wear by Archard wear model. The simulation results were compared with the measured worn dies.

Die Shape Design for Cold Forged Products Using the Artificial Neural Network (신경망을 이용한 냉간단조품의 금형형상 설계)

  • Kim, D.J;Kim, T.H;Kim, B.M;Choi, J.C
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.727-734
    • /
    • 1997
  • In practice, the design of forging processes is performed based on an experience-oriented technology, that is designer's experience and expensive trial and errors. Using the finite element simulation and the artificial neural network, we propose an optimal die geometry satisfying the design conditions of final product. A three-layer neural network is used and the back propagation algorithm is employed to train the network. An optimal die geometry that satisfied the same between inner extruded rib and outer extruded one is determined by applying the ability of function approximation of neural network. The neural networks may reduce the number of finite element simulation for determine the optimal die geometry of forging products and further they are usefully applied to physical modelling for the forging design.

Process Design of the Hot Pipe Bending Process Using High Frequency Induction Heating (고주파 유도가열을 이용한 열간 파이프 벤딩 공정 설계)

  • Ryu, Gyeong-Hui;Lee, Dong-Ju;Kim, Dong-Jin;Kim, Byeong-Min;Kim, Gwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.110-121
    • /
    • 2001
  • During hot pipe bending using induction heating, the wall of bending outside is thinned by tensile stress. In design requirement, the reduction of wall thickness is not allowed to exceed 12.5%. So in this study, two methods of bending, one is loading of reverse moment and the other is loading of temperature gradient, have been investigated to design pipe bending process that satisfy design requirements. For this purpose, finite element analysis with a bending radius 2Do(outer diameter of pipe) has been performed to calculate proper reverse moment and temperature gradient to be applied. Induction heating process has been analyzed to estimate influence of heating process parameters on heating characteristic by finite difference method. Then pipe bending experiments have been performed for verification of finite element and finite difference analysis results. Experimental results are in good agreement with the results of simulations.

  • PDF

Process Sequence Design in Cold Forged Part of Hub (허브 냉간단조품의 공정설계)

  • Go, Dae-Cheol;Kim, Byeong-Min;O, Se-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3387-3397
    • /
    • 1996
  • The Hub is an auto mobile component used as aircon clutch. The important aspects in cold forging of the Hub with complex geometry are the design of an initial shape of the workpiece, the possibility of the forming by one-stage operation and the determination of number of performs, etc. Based on the systematic procedure of process sequence design, in this paper, the forming operation of cold forged part of the Hub is designed by the rigid-plastic finite element method. The two design criterion of geometrical filling without defect and an even distribution of effective strain in final product are investigated in controlling the initial shape of the workpiece and preform configuration. It is noted that one preforming operation is required in order to obtain final product of the Hub.

Finite element analysis for prediction of weld bead shape of Nd:YAG pulse laser welding for AISI 304 stainless steel plate (AISI 304 스테인리스 강판의 Nd:YAG 펄스 레이저 용접비드 형상예측을 위한 유한요소해석)

  • Cho Haeyong;Kim Kwanwoo;Hong Jinuk;Lee Jaehoon;Suh Jeong
    • Laser Solutions
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2005
  • Pulse laser welding of AISI 304 stainless steel plate was simulated to optimize welding conditions by using commercial finite element code MARC. Due to geometric symmetry, a half model of AISI 304 stainless steel plate was considered. for the heat transfer analysis, user subroutines were applied to boundary condition. The material properties such as conductivity, specific heat, and mass density were given as a function of temperature and the latent heat associated with a given temperature range was considered. A moving heat source was designed on the basis of experimental data. As a result, Nd:YAG laser welding for AISI 304 stainless steel was successfully simulated and it should be useful to determine optimal welding condition.

  • PDF

Studies on the Crystal Structure of Benzidine Perchlorate by X-ray Diffraction Method (I) Relation between the Space Group and the Composition of the Diamine Salt Crystal (X-線 廻折法을 利用한 벤지딘過鹽素酸鹽의 結晶構造에 關한 硏究 (I) 空間群과 Diamine 鹽 結晶의 組成과 關係)

  • Koo, Chung-Hoe;Sa Kong, Yul;Kang, Man-Hyong;Shin, Hyun-So
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.119-122
    • /
    • 1970
  • In those six kinds of diamine salt crystal of which their structures had already been determined up to date, commonly one molecule of diamine and two molecules of acid were combined; although the crystal of benzidine perchlorate, only one molecule each of benzidine and perchloric acid were combined. At the case of benzidine perchlorate, one molecule acts as the role of two molecules by coincidence of the center of symmetry point of both the lattice and molecule, and perchlorate ion is locating symmetrically between two -$NH_2$ groups of different benzidine molecule, therefore benzidine and acid could be combined together with 1:1 by mole ratio. When forming the salt with diamine and acid, the combining mole ratio would be determined in accordance with the relationship between the symmetry element that presented by the space group and the symmetry element of diamine salt melecule.

  • PDF

Nonlinear Analysis of Curved Cable-Membrane Roof Systems (굴곡형 케이블-막 지붕 시스템의 비선형 해석)

  • Park, Kang-Geun;Kwun, Ik-No;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.45-55
    • /
    • 2017
  • The objective of this study is to estimate the mechanical characteristics and nonlinear behaviors on the geometric nonlinear analysis of curved cable-membrane roof systems for long span lightweight roof structures. The weight of a cable-membrane roof dramatically can reduce, but the single layer cable-membrane roof systems are too flexible and difficult to achieve the required structural stiffness. A curved cable roof system with reverse curvature works more effectively as a load bearing system, the pretension of cables can easily increase the structural stiffness. The curved cable roof system can transmit vertical loads in up and downward direction, and work effectively as a load bearing structure to resists self-weights, snow and wind loads. The nonlinear behavior and mechanical characteristics of a cable roof system has greatly an affect by the sag and pretension. This paper is carried out analyzing and comparing the tensile forces and deflection of curved roof systems by vertical loads. The elements for analysis uses a tension only cable element and a triangular membrane element with 3 degree of freedom in each node. The authors will show that the curved cable-membrane roof system with reverse curvature is a very lightweight and small deformation roof for external loads.