• Title/Summary/Keyword: Element Geochemistry

Search Result 76, Processing Time 0.022 seconds

Geochemistry of the Precambrian metamorphic rocks from the central Sobaegsan Massif, Korea (중부소백산육괴 선캠브리아 변성암류의 지구화학적 연구)

  • Song, Yong Sun
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.293-300
    • /
    • 1989
  • The basal metamorphic complex of the central Sobaegsan Massif consists of pelitic & psammitic paragneisses, various kinds of granitic gneisses and lesser amounts of amphibolite. The granitic gneisses could be clearly distinguished from the pelitic and psammitic paragneisses on the basis of major-element geochemistry. A number of geochemical plots reveals that granitic gneisses were derived from calc - alkaline igneous rocks.

  • PDF

Distribution of Rare Earth Elements and Their Applications as Tracers for Groundwater Geochemistry - A Review

  • Hwang, Heejin;Nyamgerel, Yalalt;Lee, Jeonghoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.383-389
    • /
    • 2021
  • Several studies investigating the behavior and environmental distribution of rare earth elements (REEs) have been reviewed to determine the geochemical processes that may affect their concentrations and fractionation patterns in groundwater and whether these elements can be used as tracers for groundwater-rock interactions and groundwater flow paths in small catchments. Inductively coupled plasma-mass spectrometry (ICP-MS), equipped with an ultrasonic nebulizer and active-film multiplier detector, is routinely used as an analytical technique to measure REEs in groundwater, facilitating the analysis of dissolved REE geochemistry. This review focuses on the distribution of REEs in groundwater and their application as tracers for groundwater geochemistry. Our review of existing literature suggests that REEs in ice cores can be used as effective tracers for atmospheric particles, aiding the identification of source regions.

Geochemistry of the Daebo Granitic Batholith in the Central Ogcheon Belt, Korea : A Preliminary Report (중부 옥천대에 분포하는 대보 화강암질 저반의 화학조성 : 예비보고서)

  • Cheong, Chang-Sik;Chang, Ho-Wan
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.483-493
    • /
    • 1996
  • The tectonic environment and source characteristics of the Daebo granitic batholith in the central Ogcheon Belt were investigated based upon major and trace element geochemistry. The batholith is comprised of three granite types; a biotite granite (DBBG), K-feldspar megacryst-bearing biotite granite (DBKG), and a more mafic granodiorite (DBGD). The variations of Na and K in the granites can not be explained by simple fractional crystallization from the same primary magma. The irregular behavior of these alkali elements indicates a variety of source materials or incomplete mixing of different source materials. The large ion lithophile (LIL) element enrichment and low Ta/Hf ratios of the granites are typical characteristics of normal, calc-alkaline continental arc granitoids. Based upon REE patterns of the granites, it seems to be unreasonable to regard the felsic DBBG as a late stage differentiate formed by residual melts after the fractionation of major constituent minerals of the more mafic DBGD. Inconsistent variations in ${\varepsilon}_{Nd}(t)$ and LIL element concentrations of the granites preclude a mixing model between primitive melt and LIL element-enriched upper crustal materials. The irregular geochemical variation of the granites is taken to be largely inherited from an already heterogeneous source region.

  • PDF

Geochemical Application for Clarifying the Source Material of the Earthenware: A Preliminary Study for Archaeological Application of Geochemical Tool (도토기의 태토(기원물질)산지를 추적하기 위한 지구화학적 응용연구: 지구화학연구기법의 고고학적 응용을 위한 기초연구)

  • Lee, Seung-Gu;Lee, Kil-Yong;Yoon, Yoon-Yeol;Yang, Myeong-Kwon;Kim, Kyu-Ho;Lee, Sung-Joo;Ahn, Sang-Doo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.181-197
    • /
    • 2010
  • This study is for finding a geoscientific factor for clarifying the source soil of the ancient earthenware finding. The used samples were the earthenware, soil and rocks, which were collected at the Gyeongju, Gyeongsan and Haman area. The chemical and mineralogical study for the samples were carried out for understanding the change of mineralogical and chemical composition among them. The mineralogical compositions of the earthenware are different from those of the soils from the surrounding area, which suggests that the mineralogical approach for clarifying the source soil of the earthenware should be difficult. Major element compositions of the earthenware also are different from those of the surrounding soils, which suggests that the comparison of the chemical composition using the major elements might be difficult for deducing the source soil of the earthenware. However, PAAS-normalized rare earth element (REE) patterns and Nd model ages among the rock, soils and earthenware from the same sampling sites show similar characteristics one another compared to those of the major element compositions. Nd-Sr isotopic systematics among the earthenware, soils and rocks also show a close relationship. Our results suggest that REE and Nd-Sr isotope geochemistry might be more useful than the other geochemical technique in clarifying the source soils of the ancient earthenware.

Geochemical evidence for K-metasomatism related to uranium enrichment in Daejeon granitic rocks near the central Ogcheon Metamorphic Belt, Korea

  • Hwang, Jeong;Moon, Sang-Ho
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.1001-1013
    • /
    • 2018
  • A new type of uranium occurrence in Korea was identified in pegmatitic and hydrothermally altered granite in the Daejeon area. The U-bearing parts typically include muscovite, pink-feldspar and sericite as alteration minerals. In this study, the geochemical characteristics and alteration age of the granitic rocks were examined to provide evidence for hydrothermally-enriched uranium. The K-Ar ages of muscovite coexisting with U-bearing minerals were determined as 123 and 128 Ma. The U-bearing rocks have relatively low ($CaO+Na_2O$), high $K_2O$ contents, and high alteration index values by major element geochemistry. The trace element geochemistry shows that the uraniferous rocks have significantly low Th/U ratios and strongly differentiated features. The rare earth element patterns indicate that the uraniferous rocks have a low total REE and LREE contents with depletion of Eu. Considering the geochemical variation of the granitic rock major, trace and rare earth elements, it can be concluded that uranium enrichment in pegmatites and altered granite should be genetically related to post-magmatic hydrothermal alteration of K-metasomatism after emplacement of the two-mica granite. This is the first report for geochemical characteristics of Mesozoic granite-related U-occurrences in South Korea. This study will help further research for uranium deposits with similarities in geological setting, mineralogy and age data between South China and Korea, and can also be expected to help solve the source problems related to high uranium concentrations in some groundwater occurring in the granitic terrane.

Petrology and geochemistry of the Seoul granitic batholith (서울 화강암질 저반의 암석학 및 지구화학)

  • Kwon, S.T.;Cho, D.L.;Lan, C.Y.;Shin, K.B.;Lee, T.;Mertzman, S.A.
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.109-127
    • /
    • 1994
  • We report field relationship, petrography and major and trace element chemistry for the central part of the Seoul granitic bathlith of Jurassic age occurring in the Kyonggi massif. The batholith consists mainly of biotite granite (BG) and garnet biotite granite (GBG) with minor tonalite-quartz diorite and biotite granodiorite with or without hornblende. The mode data, along with the those reported by Hong (1984) for the biotite granite (south-BG) in the southern part of the batholith, indicate that the many of BGs and majority of GBG and south-BG are leucocratic. Major element data indicate that these predominant rocks of the batholith are peraluminous. Variation trends in Harker diagrams for the major and trace elements suggest that the BG and GBG are not related by a simple crystal fractionation process. The same is true between the central (BG and GBG) and the southern (south-BG) parts of the batholith, suggesting that the central and southern parts of the Seoul batholith may consist of three separate intrusions. Tectonic discriminations using major and trace element data and the age of emplacement suggest that the batholith represents Jurassic plutonism related to an orogeny, perhaps to a subduction-related continental magmatic arc.

  • PDF

Diversity of the Cretaceous basaltic volcanics in Gyeongsang Basin, Korea (경상분지내 백악기 현무암질 화산암류의 다양성)

  • 김상욱;황상구;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • The Cretaceous basaltic rocks in Gyeongsang Basin are temporally and spatially dispersed widely in thick sedimentary piles: Chilgog basaltic rock (CGB) and Cheongyongsa basaltic rock (CSB) in the Shindong Group, and Hakbong basaltic rocks (HBB), Osibbong basalt (OSB), Secheondong basaltic rocks (SCB), Haman basaltic rocks (HAB), Hama basaltic rocks (HMB), and Chaeyaksan basaltic rocks (CYB) in the Hayang Group, upwardly in their stratigraphy. Chilgog basaltic rock is merely identified as pebbles in the Shilla Conglomerate and its provenance has not been found, and it is characteristics that the volcanics except Osibbong basalt and Chaeyaksan basaltic rocks are very small in both of their thickness and extension. Petrochemical diversity of the basaltic rocks are revealed; OSB and SCB distributed in the Yeongyang Minor Basin preserve the calc-alkaline natures in major and immobile minor element geochemistry, but CGB, HBB, HAB, and CYB reflect that they might be originated from calc-alkaline basaltic magma of volcanic arc in continental margin area by trace elements and altered to alkaline suites in the viewpoint of their major element geochemistry. Major and trace element geochemistry of CSB and HMB suggests that they may be derived from within -plate alkaline magma contaminated by the upper continental crust, especially in the case of the former.

  • PDF

Provenance of Sediments and Evidence of Hydrothermal Venting Adjacent to the Fonualei Rift and Spreading Center, Lau Basin, Southwest Pacific (남서태평양 라우분지 푸누아레이 열곡확장대 인근 퇴적물의 기원과 열수 분출의 증거)

  • Kim, Mun Gi;Hyeong, Kiseong;Seo, Inah;Yoo, Chan Min
    • Ocean and Polar Research
    • /
    • v.42 no.1
    • /
    • pp.33-47
    • /
    • 2020
  • The bulk and partition geochemistry was studied in two sediment cores collected from the axial valley of the north-central Fonualei Rift and Spreading Center (FRSC), Lau back-arc Basin, southwest Pacific. The sediments consist of mostly volcanic ash, although minor amounts of biogenic and other components were present in some intervals. The major element composition of bulk sediments recalculated to a carbonate-free basis was in good agreement with the magma compositions of the adjacent Tofua Arc and the FRSC, with only significant difference in Mn content. The enrichment of Mn and other associated elements (e.g. Cu, Co, Ni, and P) is attributed to hydrothermal input to the sediments, as evidenced by their significant partitioning in the non-detrital phases according to the partition geochemistry. Hydrogenetic and diagenetic inputs were assessed to be relatively insignificant. Estimated hydrothermal Mn fluxes during the Holocene ranged between 5.0 and 37.1 mg cm-2 kyr-1, with the higher values in younger sediments, suggesting enhanced hydrothermal activity. The hydrothermal Mn fluxes comparable to or higher than those reported from other spreading centers with strong hydrothermal activities may indicate the presence of unknown hydrothermal vent sites and/or topographic restriction on the dispersal of hydrothermal plumes in the northern part of the FRSC.

Stable isotope and rare earth element geochemistry of the Baluti carbonates (Upper Triassic), Northern Iraq

  • Tobia, Faraj Habeeb
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.975-987
    • /
    • 2018
  • Stable isotope ratios of $^{18}O/^{16}O$ and $^{13}C/^{12}C$ and rare earth elements geochemistry of the Upper Triassic carbonates from the Baluti Formation in Kurdistan Region of Northern Iraq were studied in two areas, Sararu and Sarki. The aim of the study is to quantify the possible diagenetic processes that postdated deposition and the paleoenvironment of the Baluti Formation. The replacement products of the skeletal grains by selective dissolution and neomorphism probably by meteoric water preserved the original marine isotopic signatures possibly due to the closed system. The petrographic study revealed the existence of foraminifers, echinoderms, gastropods, crinoids, nodosaria and ostracods as major framework constituents. The carbonates have micritic matrix with microsparite and sparry calcite filling the pores and voids. The range and average values for twelve carbonate rocks of ${\delta}^{18}O$ and ${\delta}^{13}C$ in Sararu section were -5.3‰ to -3.16‰ (-4.12‰) and -2.94‰ to -0.96‰ (-1.75‰), respectively; while the corresponding values for the Sarki section were -3.69‰ to -0.39‰ (-2.08‰) and -5.34‰ to -2.70‰ (-4.02‰), respectively. The bivariate plot of ${\delta}^{18}O$ and ${\delta}^{13}C$ suggests that most of these carbonates are warm-water skeletons and have meteoric cement. The average ${\Sigma}REE$ content and Eu-anomaly of the carbonates of Sararu sections were 44.26 ppm and 1.03, respectively, corresponding to 22.30 ppm and 0.93 for the Sarki section. The normalized patterns for the carbonate rocks exhibit: (1) non-seawater-like REE patterns, (2) positive Gd anomalies (average = 1.112 for Sararu and 1.114 for Sarki), (3) super chondritic Y/Ho ratio is 31.48 for Sararu and 31.73 for Sarki which are less than the value of seawater. The presence of sparry calcite cement, negative $^{13}C$ and $^{18}O$ isotope values, the positive Eu anomaly in the REE patterns (particularly for Sararu), eliminated Ce anomaly ($Ce/Ce^{\ast}$: 0.916-1.167, average = 0.994 and 0.950-1.010, average = 0.964, respectively), and Er/Nd values propose that these carbonates have undergone meteoric diagenesis. The REE patterns suggest that the terrigenous materials of the Baluti were derived from felsic to intermediate rocks.

Geochemistry of Pyrophyllite Deposits in Yangsan-Milyang Areas in Korea (경남 양산 및 밀양지역 납석광상의 지구화학적 연구)

  • Cheong, Young-Wook;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.341-354
    • /
    • 1989
  • Mineralogy and geochemistry of five pyrophyllite deposits in Yangsan-Milyang area such as Cheonbulsan, Dumyong, Dongrae, Youkwang, and Sungjin mines were investigated. Pyrophyllite ores consist mainly of pyrophyllite, sericite, and quartz with some amounts of kaolinite and pyrite. Polytype of pyrophyllite is 2M. Sericite has two polytypes of 1M and 2M1. The ${\delta}^{18}O$ values of pyrophyllite from the Cheonbulsan and the Dumyong mines were measured as 0.23-0.60‰ and 3.40‰, respectively, and those of montmorillonite and kaolinite from the Dumyong mine were in the range of 11.90-12.06‰. This low oxygen isotope composition provides conclusive evidence for hydrothermal activity in the studied area. Contents of major elements are more useful than those of trace elements to discriminate altered zones such as pyrophyllite, sericite, argillic, and andalusite zones from the surrounding rocks. Particularly, contents of $K_2O$, $Na_2O$ and CaO are helpful to identify alteration zones from the discriminant and the cluster analysis of multi-element data.

  • PDF