• Title/Summary/Keyword: Element Design

Search Result 10,684, Processing Time 0.041 seconds

Reliability-based design optimization of structural systems using a hybrid genetic algorithm

  • Abbasnia, Reza;Shayanfar, Mohsenali;Khodam, Ali
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1099-1120
    • /
    • 2014
  • In this paper, reliability-based design optimization (RBDO) of structures is addressed. For this purpose, the global search and optimization capabilities of genetic algorithm (GA) are combined with the efficiency and reasonable accuracy of an advanced moment-based finite element reliability method. For performing RBDO, three variants of GA including a real-coded, a binary-coded and an improved binary-coded GA are developed. In these methods, GA performs (finite element) reliability analyses to evaluate reliability constraints. For truss structures which include finite element modeling, reliability constraints are evaluated using finite element reliability analysis. Response sensitivity required for finite element reliability analysis is obtained by direct differentiation method (DDM) rather than finite difference method (FDM). The proposed methods are examined within four standard test examples and real-world design problems. The results illustrate the superiority and efficiency of the improved binary-coded GA. Results also illustrate that DDM significantly reduces the computational cost and improves the efficiency of the optimization procedure.

Curved-quartic-function elements with end-springs in series for direct analysis of steel frames

  • Liu, Si-Wei;Chan, Jake Lok Yan;Bai, Rui;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.623-633
    • /
    • 2018
  • A robust element is essential for successful design of steel frames with Direct analysis (DA) method. To this end, an innovative and efficient curved-quartic-function (CQF) beam-column element using the fourth-order polynomial shape function with end-springs in series is proposed for practical applications of DA. The member initial imperfection is explicitly integrated into the element formulation, and, therefore, the P-${\delta}$ effect can be directly captured in the analysis. The series of zero-length springs are placed at the element ends to model the effects of semi-rigid joints and material yielding. One-element-per-member model is adopted for design bringing considerable savings in computer expense. The incremental secant stiffness method allowing for large deflections is used to describe the kinematic motion. Finally, several problems are studied in this paper for examining and validating the accuracy of the present formulations. The proposed element is believed to make DA simpler to use than existing elements, which is essential for its successful and widespread adoption by engineers.

Precise dynamic finite element elastic-plastic seismic analysis considering welds for nuclear power plants

  • Kim, Jong-Sung;Jang, Hyun-Su
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2550-2563
    • /
    • 2022
  • This study performed a precise dynamic finite element time history elastic-plastic seismic analysis considering the welds, which have been not considered in design stage, on the nuclear components subjected to severe seismic loadings such as beyond-design basis earthquakes for sustainable nuclear power plants. First, the dynamic finite element elastic-plastic seismic analysis was performed for a general design practice that does not take into account the welds of the pressurizer surge line system, one of safety class I components in nuclear power plants, and then the reference values for the accumulated equivalent plastic strain, equivalent plastic strain, and von Mises effective stress were set. Second, the dynamic finite element elastic-plastic seismic analyses were performed for the case of considering only the mechanical strength over-mismatch of the welds as well as for the case of considering both the strength over-mismatch and welding residual strain. Third, the effects of the strength over-mismatch and welding residual strain were analyzed by comparing the finite element analysis results with the reference values. As a result of the comparison, it was found that not considering the strength over-mismatch may lead to conservative assessment results, whereas not considering the welding residual strain may be non-conservative.

An efficient finite element analysis model for thermal plate forming in shipbuilding

  • S.L. Arun Kumar;R. Sharma;S.K. Bhattacharyya
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.367-384
    • /
    • 2023
  • Herein, we present the design and development of an efficient finite element analysis model for thermal plate forming in shipbuilding. Double curvature shells in the ship building industries are primarily formed through the thermal forming technique. Thermal forming involves heating of steel plates using heat sources like oxy-acetylene gas torch, laser, and induction heating, etc. The differential expansion and contraction across the plate thickness cause plastic deformation and bending of plates. Thermal forming is a complex forming technique as the plastic deformation and bending depends on many factors such as peak temperature, heating and cooling rate, depth of heated zone and many other secondary factors. In this work, we develop an efficient finite element analysis model for the thermo-mechanical analysis of thermal forming. Different simulations are reported to study the effect of various parameters affecting the process. Temperature dependent properties are used in the analysis and the finite element analysis model is used to identify the critical flame velocity to avoid recrystallization of plate material. A spring connected plate is modeled for structural analysis using spring elements and that helps in identifying the resultant shapes of various thermal forming patterns. Finally, detailed simulation results are reported to establish the efficacy, applicability and efficiency of the designed and developed finite element analysis model.

DESIGN PROBLEM SOLVED BY OPTIMAL CONTROL THEORY

  • Butt, Rizwan
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.167-178
    • /
    • 1997
  • In this paper we present an application to airfoil design of an optimum design method based on optimal control theory. The method used here transforms the design problem by way of a change of variable into an optimal control problem for a distributed system with Neumann boundary control. This results in a set of variational inequalities which is solved by adding a penalty term to the differential equation. This si inturn solved by a finite element method.

Development of the Evaluation Element for Fire Engineering Design (건축물의 성능적 내화설계 평가 요소기술 개발)

  • Kwon, In-Kyu;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.410-414
    • /
    • 2009
  • Performance based fire engineering design should be developed through basic survey and fundamental element such as analytic program for evaluation of fire performance of building. The basic elements will be expressed to the surveys of the structures of building laws, regulation and the fundamental elements consist of technical guidances contained design fires, heat analysis, determination of structural performance.

  • PDF

A Study on the Design of Automotive Tire Profile for High Speed Durability Improvement (고속내구성 향상을 위한 자동차용 타이어 프로파일의 설계연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.135-142
    • /
    • 1997
  • New approach to determine thd design of automotive tire profile was introduced. In this study, design technology for tire profile was combined with a finite element method to improve high speed durability. Static and dynamic behavior analysis of new concept tire was compared with conventional tire profile. To obtain the improved tire performance, appropriate design values, ie. design methodology, section profile selection, material properties, are needed.

  • PDF

Shape Design Optimization using Isogeometric Analysis Method (등기하 해석법을 이용한 형상 최적 설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.216-221
    • /
    • 2008
  • Shape design optimization for linear elasticity problem is performed using isogeometric analysis method. In many design optimization problems for real engineering models, initial raw data usually comes from CAD modeler. Then designer should convert this CAD data into finite element mesh data because conventional design optimization tools are generally based on finite element analysis. During this conversion there is some numerical error due to a geometry approximation, which causes accuracy problems in not only response analysis but also design sensitivity analysis. As a remedy of this phenomenon, the isogeometric analysis method is one of the promising approaches of shape design optimization. The main idea of isogeometric analysis is that the basis functions used in analysis is exactly same as ones which represent the geometry, and this geometrically exact model can be used shape sensitivity analysis and design optimization as well. In shape design sensitivity point of view, precise shape sensitivity is very essential for gradient-based optimization. In conventional finite element based optimization, higher order information such as normal vector and curvature term is inaccurate or even missing due to the use of linear interpolation functions. On the other hands, B-spline basis functions have sufficient continuity and their derivatives are smooth enough. Therefore normal vector and curvature terms can be exactly evaluated, which eventually yields precise optimal shapes. In this article, isogeometric analysis method is utilized for the shape design optimization. By virtue of B-spline basis function, an exact geometry can be handled without finite element meshes. Moreover, initial CAD data are used throughout the optimization process, including response analysis, shape sensitivity analysis, design parameterization and shape optimization, without subsequent communication with CAD description.

  • PDF

Optimization of design variables of the multi layer bellows using FE-simulation and design of experiment (유한요소해석과 실험계획 법을 활용한 다층관 벨로우즈의 설계변수 최적화)

  • Oh, S.K.;Suh, C.H.;Jung, Y.C.;Kim, D.B.;Sung, J.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.277-280
    • /
    • 2008
  • Multi layer bellows are being manufactured for commercial vehicle because of the characteristic of high durability compared with single iaγor bellows used to passenger vehicle. Finite Element Method (FEM) study and optimization about single layer bellows are actively progressed, but FEM study about multi layer bellows which have gap between layer is rarely processed. Therefore, this article presents finite element modeling of multi layer bellows for the improvement of simulation reliability. For the shape optimization of multi layer bellows, design of experiment and Taguchi method are used.

  • PDF

Study on seismic behavior and seismic design methods in transverse direction of shield tunnels

  • He, Chuan;Koizumi, Atsushi
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.651-662
    • /
    • 2001
  • In order to investigate the seismic behavior and seismic design methods in the transverse direction of a shield tunnel, a series of model shaking table tests and a two-dimensional finite element dynamic analysis on the tests are carried out. Two kinds of static analytical methods based on ground-tunnel composite finite element model and beam-spring element model are proposed, and the validity of the static analyses is verified by model shaking table tests. The investigation concerns the dynamic response behavior of a tunnel and the ground, the interaction between the tunnel and ground, and an evaluation of different seismic design methods. Results of the investigation indicate that the shield tunnel follows the surrounding ground in displacement and dynamic characteristics in the transverse direction; also, the static analytical methods proposed by the authors can be used directly as the seismic design methods in the transverse direction of a shield tunnel.