• Title/Summary/Keyword: Electrostatic analysis

Search Result 391, Processing Time 0.033 seconds

Optimal Design of Dielectric shape and Topology using Smooth Boundary Topology Optimization Method (부드러운 경계 위상 최적설계기법을 이용한 유전체 형상 및 위상 최적설계)

  • Jeung, Gi-Woo;Choi, Nak-Sun;Kim, Nam-Kyung;Kim, Dong-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1936-1941
    • /
    • 2009
  • This paper deals with a new methodology for topology optimization in which the topology of the design domain may change during the shape optimization process. To achieve this, the concept of the topological gradient is introduced to compute the sensitivity of an objective function when a small hole is drilled in the domain. Based on shape and topological sensitivity values, the shape and topology of the design domain may be simultaneously changed during design iterations if necessary. To verify the advantages and also to facilitate understanding of the method itself, two electrostatic design problems have been tested by using 2D finite element analysis: the first is the inverse problem of a simple dielectric model and the second is the rotor design of a MEMS actuator.

System Level ESD Analysis - A Comprehensive Review I on ESD Generator Modeling

  • Yousaf, Jawad;Lee, Hosang;Nah, Wansoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2017-2032
    • /
    • 2018
  • This study presents, for the first time, state-of-the art review of the various techniques for the modeling of the electrostatic discharge (ESD) generators for the ESD analysis and testing. After a brief overview of the ESD generator, the study provides an in-depth review of ESD generator modeling (analytical, circuit and numerical modeling) techniques for the contact discharge mode. The proposed techniques for each modeling approach are compared to illustrates their differences and limitations.

Shrinkproof Effect and Property of Shrinkproof-Finished Wool Knit

  • Park Myung-Ja;Kwak Soo-Kyoung
    • The International Journal of Costume Culture
    • /
    • v.7 no.2
    • /
    • pp.103-111
    • /
    • 2004
  • The shrinkproof-finished wool fibers treated with resin coating and chlorination methods were used to find out an optimal shrinkproof finishing method keeping the quality properties of wool fabric to manufacturers. Shrinkage during repeated washing, electrostatic propensity, thermal resistance and pilling propensity of shrinkproof-finished wool knits, and analysis of finishing methods were measured. Upon the results from the surface examination of shrinkproof-finished wool fibers, the patterns of scale layer and degree of scale removal were subject to change according to the finishing processes. The shrink resistance was significantly enhanced on repeated washing of shrinkproof-finished knits, especially, chlorinated wool. Addition of strong physical force and alkali detergent applied in this washing experiment brought about superior effects with the low shrinkage rate although it was very severe washing conditions for wool fabrics. The results from the washing experiment implies that shrinkproof-finished knitted fabrics can be machine washed at individual households with other ordinary laundry. There was some changes and variation found in thermal resistance, electrostatic propensity, and pilling, however, it seems to be minor within standard limits. Therefore, shrinkproof-finished knitted fabrics did not bring serious changes to other physical properties comparing with original wool, which helps consumers handle wool knitted clothes more conveniently.

  • PDF

Effect of Secondary Flows on the Particle Collection Efficiency in Single Stage Electrostatic Precipitator (1단 전기 집진기에서 2차 유동이 집진 효율에 미치는 영향)

  • Lee, Jae-Bok;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.251-259
    • /
    • 2000
  • The ionic wind formed in a nonuniform electric field has been recognized to have a significant effect on particle collection in an electrostatic precipitator(ESP). Under normal operating conditions the effect of ionic wind is not pronounced. However, as the flow velocity becomes smaller, the ionic wind becomes pronounced and induces secondary flow, which has a significant influence on the flow field and the particle collecting efficiency. In this paper, experiments for investigating the effect of secondary flow on collection efficiencies were carried out by changing the flow velocities in 0.2-0.7m/s and the applied voltages in 9-11kV/cm. The particle size distributions and concentrations are measured by DMA and CNC. To analyze the experimental results, numerical analysis of electric filed in ESP was carried out. It shows that particle collection is influenced by two independent dimensionless numbers, $Re_{ehd}\;and\;Re_{flow}$ not by $N_{ehd}$ alone. When $Re_{flow}$, decreases for constant $Re_{ehd}$, the secondary flow prohibits the particle collection. But when $Re_{ehd}$ increases for constant $Re_{flow}$, it enhances the particle collection by driving the particles into the collection region.

Deposition of MgO Thin Films by Electrostatic Spray Pyrolysis(ESP) method and Application to AC-PDP (정전기 분무 열분해법에 의한 MgO 박막 증착과 AC-PDP로의 용용에 대한 연구)

  • Kim, Soo-Gil;Eun, Jae-Hwan;Kim, Hyeong-Joon;Kim, Young-Kee;Park, Chung-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.133-138
    • /
    • 2000
  • MgO thin films were deposited using $Mg(tmhd)_2$ as a precursor dissolved in a solvent by electrostatic spray pyrolysis. When a pure tetra hydro furan was used as a solvent, a large number of particles appeared on the MgO thin film surface due to homogeneous nucleation. However, by adding 1-butyl alcohol or 1-octyl alcohol to THF, homogeneous nucleation was restricted and the number density of the large particles was also drastically reduced. X-ray diffraction analysis showed that the MgO films had a (100) preferred orientation regardless of the type of solvents used. Characterization using Fourier Transformed-Infrared and spectroscopic photometer revealed that the crystallized MgO thin films on the glass substrate had a high optical transmittance (> 85 %) in the visible range. Discharge characteristics of MgO thin films deposited by ESP method on an alternating-current plasma display panel were compared with a MgO thin film prepared by reactive radio-frequency planar magnetron sputtering.

  • PDF

Characteristics of Cylindrical Electrostatic Precipitator with Centrifugal Effect (원심력 효과를 고려한 실린더형 전기집진기의 특성)

  • Lee, Joon;Jo, Yong-Soo;Yoa, Seok-Jun
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.351-358
    • /
    • 2001
  • The main purpose of this study was to investigate the characteristics of cylindrical electrostatic precipitator with centrifugal effect in viewpoints of pressure drip and collection efficiency, experimentally. The experiment was carried out for the analysis of current-voltage, pressure drop and collection efficiency with various experimental parameters such as the applied voltage, inlet velocity, inlet size and inlet type(upper and bottom), etc. In the results, the pressure drops were estimated as 27~54, $34~63mmH_2O$ for inlet size $15mm{\tiems}30mm$ and $30mm{\tiems}60mm$, respectively. The collection effeciencies were shown over 90% with the small inlet size($15mm{\tiems}30mm$) for the applied voltage 40kV, inlet velocity(15~21m/s), and 51~89% with the large inlet size ($30mm{\tiems}60mm$). Moreover, in the applied voltage 0kV and inlet size $15mm{\tiems}30mm$, the collection efficiency induced by centrifugal force was represented as about 35% with inlet velocity 15 - 21m/s.

  • PDF

Relationship between ICAC EP-7 and %RMS, Standards for Gas Flow Uniformity inside Electrostatic Precipitators (전기집진기 내부 유동 균일도 평가 기준인 ICAC EP-7과 %RMS 간 상관관계)

  • Shin, Wan-Ho;Hong, Won-Seok;Song, Dong-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.234-240
    • /
    • 2010
  • Gas flow uniformity is an important factor to guarantee particle removal performance of electrostatic precipitators (EP), and the gas flow uniformity is evaluated by a fraction of standard deviation to the mean of gas flow distribution (%RMS) or a technical standard, ICAC EP-7, provided by The Institute of Clean Air Companies. In this study, relationship between the ICAC EP-7 and %RMS in evaluation of gas flow uniformity was investigated in terms of flow velocity. The maximum values of %RMS for gas velocity distribution of normal distribution has been obtained, and the maximum values of %RMS with gas velocity distribution satisfying ICAC EP-7 standards were also evaluated. With gas flow distribution obtained from CFD analysis and physical model test of real EP, %RMS values were calculated and it was tested if those gas flow distribution satisfy the criteria specified in ICAC EP-7. The %RMS values satisfying criteria of ICAC have been appeared to have similar values with %RMS values calculated with normal distribution of gas velocities.

Analysis of the electrostatic induction voltage and electromagnetic induction current on the Parallel Circuit in 765kV Double Circuit Transmission Line (765kV 2회선 송전선로를 765kV 및 345kV로 병행운전시 유도현상 예측)

  • Woo, J.W.;Shim, E.B.;Kwak, J.S.;Jeon, M.R.;Kim, K.I.;Kim, T.O.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.169-171
    • /
    • 2002
  • The western route of KEPCO's 765kV transmission line has been tentatively operating as 345kV voltage before commercial operation. After finishing the test operation of 765kV substation in 2002. KEPCO decided to operate the 765kV line for commercial operation. During the applying of 765kV voltage to the transmission line, double circuit transmission line will be operated with two voltage grades of 765kV and 345kV. Because the earthing switch is installed on both end of transmission line, we had estimated the electrostatic induction voltage and electromagnetic induction current before the line energizing in order to confirm the ratings of earthing switch. The induced voltage and current is very important for the maintenance of parallel circuit. This paper describes the simulation study of electrical phenomena such as electrostatic induction voltage from the parallel line and electromagnetic induction current from the parallel circuit. The transmission line model was developed by EMTP (Electro-Magnetic Transient Program).

  • PDF