• Title/Summary/Keyword: Electrostatic Discharge (ESD)

Search Result 101, Processing Time 0.032 seconds

Characteristics of Extended Drain N-type MOSFET with Double Polarity Source for Electrostatic Discharge Protection (정전기 보호를 위한 이중 극성소스를 갖는 EDNMOS 소자의 특성)

  • Seo, Yong-Jin;Kim, Kil-Ho;Park, Sung-Woo;Lee, Sung-Il;Han, Sang-Jun;Han, Sung-Min;Lee, Young-Keun;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.97-98
    • /
    • 2006
  • High current behaviors of extended drain n-type metal-oxide-semiconductor field effects transistor (EDNMOS) with double polarity source (DPS) for electrostatic discharge (ESD) protection are analyzed. Simulation based contour analyses reveal that combination of bipolar junction transistor operation and deep electron channeling induced by high electron injection gives rise to the second on-state. Therefore, the deep electron channel formation needs to be prevented in order to realize stable and robust ESD protection performance. Based on our analyses, general methodology to avoid the double snapback and to realize stable ESD protection is to be discussed.

  • PDF

Simulation-based P-well design for improvement of ESD protection performance of P-type embedded SCR device

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.196-204
    • /
    • 2022
  • Electrostatic discharge (ESD) protection devices of P-type embedded silicon-controlled rectifier (PESCR) structure were analyzed for high-voltage operating input/output (I/O) applications. Conventional PESCR standard device exhibits typical SCR characteristics with very low-snapback holding voltages, resulting in latch-up problems during normal operation. However, the modified device with the counter pocket source (CPS) surrounding N+ source region and partially formed P-well (PPW) structures proposed in this study could improve latch-up immunity by indicating high on-resistance and snapback holding voltage.

Eletrostatic Discharge Effects on AlGaN/GaN High Electron Mobility Transistor on Sapphire Substrate (사파이어 기판을 사용한 AlGaN/GaN 고 전자이동도 트랜지스터의 정전기 방전 효과)

  • Ha Min-Woo;Lee Seung-Chul;Han Min-Koo;Choi Young-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.109-113
    • /
    • 2005
  • It has been reported that the failure phenomenon and variation of electrical characteristic due to the effect of electrostatic discharge(ESD) in silicon devices. But we had fess reports about the phenomenon due to the ESD in the compound semiconductors. So there are a lot of difficulty to the phenomenon analysis and to select the protection method of main circuits or the devices. It has not been reported that the relation between the ESD stress and GaN devices, which is remarkable to apply the operation in high temperature and high voltage due to the superior material characteristic. We studied that the characteristic variation of the AlGaN/GaN HEMT current, the leakage current, the transconductance(gm) and the failure phenomenon of device due to the ESD stress. We have applied the ESD stress by transmission line pulse(TLP) method, which is widely used in ESD stress experiments, and observed the variation of the electrical characteristic before and after applying the ESD stress. The on-current trended to increase after applying the ESD stress. The leakage current and transconductance were changed slightly. The failure point of device was mainly located in middle and edge sides of the gate, was considered the increase of temperature due to a leakage current. The GaN devices have poor thermal characteristic due to usage of the sapphire substrate, so it have been shown to easily fail at low voltage compared to the conventional GaAs devices.

Optimal Design of ESD Protection Device with different Channel Blocking Ion Implantation in the NSCR_PPS Device (NSCR_PPS 소자에서 채널차단 이온주입 변화에 따른 최적의 정전기보호소자 설계)

  • Seo, Yong-Jin;Yang, Jun-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.21-26
    • /
    • 2016
  • The ESD(electrostatic discharge) protection performance of PPS(PMOS pass structure) embedded N-type silicon controlled rectifier(NSCR_PPS) device with different implant of channel blocking region was discussed for high voltage I/O applications. A conventional NSCR standard device shows low on-resistance, low snapback holding voltage and low thermal breakdown voltage, which may cause latch-up problem during normal operation. However, our proposed NSCR_PPS devices with modified channel blocking structure demonstrate the improved ESD protection performance as a function of channel implant variation. Therefore, the channel blocking implant was a important parameter. Since the modified device with CPS_PDr+HNF structure satisfied the design window, we confirmed the applicable possibility as a ESD protection device for high voltage operating microchips.

Development of Discharge Model and Preventive Diagnosis Program for Discharge Risk Assessment of Charged Human Body (대전인체의 방전위험성 평가를 위한 모델 및 예방진단 프로그램 개발)

  • 김두현;김상철;고은영
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.80-87
    • /
    • 1998
  • This paper presents a study on the development of discharge model and computer program for assessing the risk of electrostatic discharge(ESD) of charged human body This ESD event is modelled as a two-body problem using spherical conductors, simulating the approach of a charged conductor (human body) to a second conductor (electronic equipment). The charge/discharge process for the model is formulated as a matrix of equations by Maxwell's method. Body potentials, energies and the charge transfer during a discharge are calculated. The developed program, based on the suggested scheme in this paper, is applied to a sample system. The results provide a better understanding of ESD event and demonstrate the usefulness of two-body model in practical applications.

  • PDF

Electrostatic Discharge Experiment for Smartphone Battery Protection Circuit Module (스마트폰 배터리 보호회로 모듈에 대한 정전기 방전 실험)

  • Yoo, Jong-Gyeong;Park, Kyung-Je;Jeon, Seong-Hyeok;Yeo, Junho;Cho, Young-Ki;Lee, Dae-Heon;Kim, Jong-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.53-54
    • /
    • 2017
  • In this paper, we have studied the electrostatic discharge test for the battery protection circuit module in the lithium ion battery used as a smartphone battery which is used to prevent the explosion hazard due to overcharge, over discharge, and short-circuit. A lithium ion battery of S company was used as an experimental sample, and an ESD gun simulator compliant with IEC 61000-4-2 standard was used for electrostatic discharge injection. The contact discharge was applied to the various pins of the battery protection circuit module in increments of 2 kV in the range of 2 kV to 10 kV and in 5 kV increments in the range of 10 kV to 30 kV.

  • PDF

Measurements of Fast Transient Voltages due to Human Electrostatic Discharges (인체에 대전된 정전기 방전에 의해 발생한 급속과도전압의 측정)

  • 이복희;이동문;강성만;엄주홍;이태룡;이승칠
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.108-116
    • /
    • 2002
  • This paper presents the measurements and evaluation of voltage waveforms due to human electrostatic discharge(ESD). The principle of operation and design rule of a new device for measuring the ESD fast transient voltages with very fast rise time were described. Peak values and rise time of ESD voltages derived from a charged human body under a variety of experimental conditions were examined. The frequency bandwidth of the proposed voltage measuring system ranges from DC to 400[㎒]. The ESD voltage waveform is nearly equal to the ESD current waveform and the peak amplitude of ESD current waveform is roughly proportional to the ESD voltage in each experimental conditions. A rapid approach results in a discharge voltage with a faster initial rise time than for a slow approach. The voltages caused by direct finger ESDs have an initial slope with a relatively long, 10∼30[ns] rise time, but the amplitude is small. On the other hand, the voltages caused by direct hand/metal ESDs have a steep initial s1ope with 1 ∼3[ns] rise time, but an initial spike is very big. As a consequence, it was found that the ESD voltage and current waveforms strongly depend on the approach speed and material of intruder. These measurement results would be useful to design the ESD protective devices.

A statistical estimation of electromagnetic detection rate caused by electrostatic discharge (정전기 방전에 의한 전자 간섭빈도의 통계적 추정)

  • 강인호;이창복;정옥현
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.7-13
    • /
    • 1997
  • A modern electronic system located at a certain distance form the discharge may respond with unexpected sensitivity ot that phenomenon, even if the phenomenon is so slight as to have been ignored in the port. It has been found that electromagnetic wave energy is emitted as a results of this electrostatic discharge between metallic objects. In order to theoretically examine the peculiar phenomenon, we propose an analytical approach to model the indirect ESD effect. A soruce model is given here using the spark resistence presented by rompe-weizel. A model experiment for indirect eSD is also conducted to express ESD detection rate by the statistical estimation. We verify that the statistical estimations agree the theoretical curve resulted from the rompe-weisel resistence.

  • PDF

An Analysis of Damage Mechanism of Semiconductor Devices by ESD Using Field-induced Charged Device Model (유도대전소자모델(FCDM)을 이용한 ESD에 의한 반도체소자의 손상 메커니즘 해석)

  • 김두현;김상렬
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.57-62
    • /
    • 2001
  • In order to analyze the mechanism of semiconductor device damages by ESD, this paper adopts a new charged-device model(CDM), field-induced charged nudel(FCDM), simulator that is suitable for rapid routine testing of semiconductor devices and provides a fast and inexpensive test that faithfully represents ESD hazards in plants. The high voltage applied to the device under test is raised by the fie]d of non-contacting electrodes in the FCDM simulator. which avoids premature device stressing and permits a faster test cycle. Discharge current md time are measured and calculated The FCDM simulator places the device at a huh voltage without transferring charge to it, by using a non-contacting electrode. The only charge transfer in the FCMD simulator happens during the discharge. This paper examine the field charging mechanism, measure device thresholds, and analyze failure modes. The FCDM simulator provides a Int and inexpensive test that faithfully represents factory ESD hazards. The damaged devices obtained in the simulator are analyzed and evaluated by SEM Also the results in this paper can be used for to prevent semiconductor devices from ESD hazards.

  • PDF

Study on the Optimal CPS Implant for Improved ESD Protection Performance of PMOS Pass Structure Embedded N-type SCR Device with Partial P-Well Structure (PMOS 소자가 삽입된 부분웰 구조의 N형 SCR 소자에서 정전기 보호 성능 향상을 위한 최적의 CPS 이온주입에 대한 연구)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.1-5
    • /
    • 2015
  • The ESD(electrostatic discharge) protection performance of PPS(PMOS pass structure) embedded N-type silicon controlled rectifier(NSCR_PPS) device with different partial p-well(PPW) structure was discussed for high voltage I/O applications. A conventional NSCR_PPS standard device shows typical SCR-like characteristics with low on-resistance, low snapback holding voltage and low thermal breakdown voltage, which may cause latch-up problem during normal operation. However, our proposed NSCR_PPS devices with modified PPW_PGM(primary gate middle) and optimal CPS(counter pocket source) implant demonstrate the stable ESD protection performance with high latch-up immunity.