• 제목/요약/키워드: Electrophysiological Features

Search Result 34, Processing Time 0.027 seconds

Electrophysiological features and prognosis of peripheral neuropathy associated with IgM monoclonal gammopathy: a single-center analysis in South Korea

  • Sooyoung Kim;Bit Na Lee;Seung Woo Kim;Ha Young Shin
    • Annals of Clinical Neurophysiology
    • /
    • v.25 no.2
    • /
    • pp.84-92
    • /
    • 2023
  • Background: Clinical spectrum of immunoglobulin M (IgM) monoclonal gammopathy varies from IgM monoclonal gammopathy of unknown significance (IgM-MGUS) to hematological malignancies. We evaluated the clinical features, electrophysiological characteristics, and prognosis of patients with peripheral neuropathy associated with IgM monoclonal gammopathy (PN-IgM MG). Methods: We retrospectively evaluated 25 patients with PN-IgM MG. Peripheral neuropathy was classified as axonal, demyelinating, or undetermined, based on electrophysiological studies. We classified the enrolled patients into the IgM-MGUS and malignancy groups, and compared the clinical and electrophysiological features between the groups. Results: Fifteen patients had IgM-MGUS and 10 had hematologic malignancies (Waldenström's macroglobulinemia: two and B-cell non-Hodgkin's lymphoma: eight). In the electrophysiological evaluation, the nerve conduction study (NCS) criteria for demyelination were met in 86.7% of the IgM-MGUS group and 10.0% of the malignancy group. In particular, the distal latencies of the motor NCS in the IgM-MGUS group were significantly prolonged compared to those in the malignancy group (median, 9.1 ± 5.1 [IgM-MGUS], 4.2 ± 1.3 [malignancy], p = 0.003; ulnar, 5.4 ± 1.9 [IgM-MGUS], 2.9 ± 0.9 [malignancy], p = 0.001; fibular, 9.3 ± 5.1 [IgM-MGUS], 3.8 ± 0.3 [malignancy], p = 0.01; P-posterior tibial, 8.3 ± 5.4 [IgM-MGUS], 4.4 ± 1.0 [malignancy], p = 0.04). Overall treatment responses were significantly worse in the malignancy group than in the IgM-MGUS group (p = 0.004), and the modified Rankin Scale score at the last visit was higher in the malignancy group than in the IgM-MGUS group (2.0 ± 1.1 [IgM-MGUS], 4.2 ± 1.7 [malignancy], p = 0.001), although there was no significant difference at the initial assessment. Conclusions: The risk of hematological malignancy should be carefully assessed in patients with PN-IgM MG without electrophysiological demyelination features.

Electrophysiological characteristics of R47W and A298T mutations in CLC-1 of myotonia congenita patients and evaluation of clinical features

  • Chin, Hyung Jin;Kim, Chan Hyeong;Ha, Kotdaji;Shin, Jin Hong;Kim, Dae-Seong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.439-447
    • /
    • 2017
  • Myotonia congenita (MC) is a genetic disease that displays impaired relaxation of skeletal muscle and muscle hypertrophy. This disease is mainly caused by mutations of CLCN1 that encodes human skeletal muscle chloride channel (CLC-1). CLC-1 is a voltage gated chloride channel that activates upon depolarizing potentials and play a major role in stabilization of resting membrane potentials in skeletal muscle. In this study, we report 4 unrelated Korean patients diagnosed with myotonia congenita and their clinical features. Sequence analysis of all coding regions of the patients was performed and mutation, R47W and A298T, was commonly identified. The patients commonly displayed transient muscle weakness and only one patient was diagnosed with autosomal dominant type of myotonia congenita. To investigate the pathological role of the mutation, electrophysiological analysis was also performed in HEK 293 cells transiently expressing homo-or heterodimeric mutant channels. The mutant channels displayed reduced chloride current density and altered channel gating. However, the effect of A298T on channel gating was reduced with the presence of R47W in the same allele. This analysis suggests that impaired CLC-1 channel function can cause myotonia congenita and that R47W has a protective effect on A298T in relation to channel gating. Our results provide clinical features of Korean myotonia congenita patients who have the heterozygous mutation and reveal underlying pathophyological consequences of the mutants by taking electrophysiological approach.

Electrophysiological Studies in the Diagnosis of Amyotrophic Lateral Sclerosis (근위축성 측삭경화증의 진단에 있어서 전기진단학적 검사)

  • Lee, Dong Kuck
    • Annals of Clinical Neurophysiology
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2004
  • Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that primarily affects motor neurons. The characteristic features of this devastating disorder are the simultaneous presence of upper and lower motor neuron (LMN) signs with progression from one region of the neuraxis to the next and eventual death, typically from respiratory compromise. Electrophysiological studies are an indispensible part of the ALS evaluation, especially serving as an extension of the clinical examination, and most useful in identifying LMN dysfunction. Not only may electrodiagnostic studies reveal characteristic changes in those regions clinically manifesting signs, but it also serves to disclose asymptomatic areas of involvement.

  • PDF

Histopathologic Features and CD5+ B-lymphocyte Expression in the Experimental Allergic Neuritis (실험적 자가면역성 말초신경염에서의 조직병리적 병변 및 CD5+ B-림프구의 발현)

  • Cho, Joong-Yang;Choi, Won-Jun;Kim, Sung-Hun;Sung, Jung-Joon;Kim, Ho-Jin;Park, Kyung-Seok;Choi, Ki-Young;Kim, Hyun-Jung;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.2
    • /
    • pp.91-98
    • /
    • 1999
  • Background : The pathogenesis of acute inflammatory demyelinating polyradiculoneuropathy (AIDP), Guillain Barre syndrome (GBS) is not clear, but it has been known that the immune mechanisms play an important role. Authors performed this study to establish an animal model of experimental allergic neuritis (EAN) by immunizing the myelin components of peripheral nerves and to understand the electrophysiological and histopathological features as well as the ${CD_5}^+$ B-lymphocyte changes in peripheral bloods in the EAN models. Methods : Lewis rats weighing 150-200 gm were injected subcutaneously in soles two times with total myelin, P0, P1, or P2 proteins purified from the bovine cauda eguina. The EAN induction was assessed by evaluating clinical manifestations. The electrophysiological and histopathological features were studied as routine methods. The ${CD_5}^+$ Blymphocytes were double stained using monoclonal FITC conjugated anti-rat CD45RA and R-PE conjugated anti-rat ${CD_5}^+$ antibodies and calculated using a fluorescence activated cell sorter (FACS). Results : The EAN animal models were established. In two out of five, in one out of two, in none out of three, and in none out of one Lewis rats injected with purified total myelin, P0, P1, P2 proteins respectively, They showed slow spontaneous motor activity and weak resistance against pulling back by tails. The typical electrophysiological and histologic findings in total protein and P0 induced EAN animal models were the decreased conduction velocity, the decreased compound muscle action potential (CMAP) amplitude and the dispersion phenomenon. The perivascular infiltrates of lymphocytes with focal demyelinating process were found in light microscopy. The ${CD_5}^+$ B-lymphocyte expression in three EANs were 2.38%, 3.50% 2.50%, which were not significantly increased, compared with those in normal controls. Conclusion : The EAN animal models were successfully established by injecting the total myelin and P0 myelin and they showed electrophysiological and histological features typical of demyelinating process. However they did not show an increased expression of ${CD_5}^+$ B-lymphocyte in peripheral bloods which could be indirect evidence of humoral autoimmunity.

  • PDF

Clinical and Electrophysiological Characteristics of the Patient with 'Mononeuropathy multiplex' (다발성 단신경병증의 임상적, 전기생리학적 특성)

  • Park, Kyung-Seok;Chung, Jae-Myun;Park, Seong-Ho;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.4 no.1
    • /
    • pp.34-37
    • /
    • 2002
  • Background : The term "mononeuropathy multiplex" means simultaneous or sequential involvement of individual noncontiguous nerve trunks, evolving over days to years. The aim of this study was to delineate the causes, clinical features, and detailed electrophysiological findings in the patients with mononeuropathy multiplex. Methods : We analyzed the medical records of 22 patients with mononeuropathy multiplex confirmed on electrophysiological studies in Inje University Seoul Paik Hospital, Seoul Municipal Boramae Hospital, and Seoul National University Hospital between 1991 to 2000. Results : The number of male and female patients was equal. The mean age was 48 years with a peak incidence in the sixth decade. The etiology could be divided into vasculitis(11 patients) or non-vasculitis group. In vasculitis group, Churg-Strauss syndrome, polyarteritis nodosa, and rheumatoid arthritis were included. The non-vasculitis group included diabetes mellitus, leprosy, and Guillain-Barre syndrome. Ulnar and median nerves were most commonly involved(91%). In descending order of frequency, peroneal, posterior tibial, sural, and radial nerves were also involved. Bilateral involvement occurred most commonly in ulnar nerve. The symptoms and signs of mononeuropathy multiplex were the initial manifestations in 12 patients(55%), which was more frequent in vasculitis group(73%). Nerve conduction abnormalities could be divided into axonal, demyelinating, or mixed type. Most(91%) of the patients in vasculitis group revealed axonal type abnormalities. The location of the nerve lesion was frequently related to potential site of entrapment in demyelinating type. Conclusions : Mononeuropathy multiplex is the presenting features of the etiological disease frequently, especially in vasculitis group. Nerve conduction studies(NCS) reveals not only axonal type but also demyelinating type abnormalities. The etiological diseases were different in each type. Therefore, NCS is very helpful for the early etiological diagnosis and therapeutic implication in the patients with mononeuropathy multiplex.

  • PDF

Insight into the prognostic factors of chronic inflammatory demyelinating polyneuropathy

  • Baek, Seol-Hee
    • Annals of Clinical Neurophysiology
    • /
    • v.22 no.1
    • /
    • pp.8-12
    • /
    • 2020
  • Chronic inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated neuropathy with heterogeneous features. Appropriate treatment will produce a favorable outcome, but a poor treatment response and severe disability have also been reported. The roles of the clinical phenotypes and electrophysiological features of CIDP as well as of autoantibodies against nodal and paranodal proteins have been highlighted previously due to their association with the treatment response and long-term prognosis. This review addresses the diverse factors associated with the prognosis of CIDP.

Periodic Limb Movement and Restless Legs Syndrome in Neurological Disorders (신경과 질환에서 주기성하지운동과 하지불안증후군)

  • Lee, Il-Keun
    • Sleep Medicine and Psychophysiology
    • /
    • v.7 no.2
    • /
    • pp.84-87
    • /
    • 2000
  • The periodic limb movement (PLM) disorder is a disease of motor sign mainly in the lower extremities, whereas the restless leg syndrome (RLS) accompanies sensory symptoms in the lower extremities. These two disorders may occur in the one patient, which implies possible common pathophysiological background in those disorders. The aim of this article is to review the clinical features, diagnostic criteria, electrophysiological characteristics of the two disorders and their relation to neurological disorders.

  • PDF

Electrophysiological Features of Diabetic Polyneuropathy: Motor Nerve Conduction Studies (당뇨병성다발신경병증의 전기생리학적 특징: 운동신경전도검사)

  • Kang, Ji-Hyuk;Lee, Yun-Seob
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.237-245
    • /
    • 2010
  • Nerve conduction studies (NCS) are the most objective measure of nerve function and essential for the diagnosis of sub-clinical neuropathy in diabetes mellitus and diabetic polyneuropathy (DPN). This study evaluates the characteristic of electrophysiological abnormalities in DPN. Electrodiagnostic data from 120 patients with diabetic polyneuropathies and 77 control subjects were reviewed. Motor nerve conduction velocities (MNCV), distal motor latencies (DML), compound muscle action potential (CMAP) amplitudes, No potential frequency and conduction block were analyzed. Data were normalized based on normative reference values, and the proportion of nerves with abnormal values in the lower and upper limbs were evaluated. DPN was systemic demyelinating peripheral polyneuropathy and more severe abnormal nerve conduction was found in lower limbs than in upper limbs. The abnormal degree was more severe in peroneal nerve. It was no statistically significant difference of conduction block in control and DPN group. Our findings suggest that DPN had more common and severe peroneal nerve involvement in the motor nerve conduction studies (MNCS). These findings have important implications for the electrophysiological evaluation of DPN.

Clinical and Electrophysiological Characteristics of Meralgia Paresthetica (대퇴감각이상증의 임상 및 전기생리학적 특징)

  • Choi, Mun Hee;Park, Hanul;Eom, Young In;Joo, In Soo
    • Annals of Clinical Neurophysiology
    • /
    • v.15 no.2
    • /
    • pp.48-52
    • /
    • 2013
  • Background: Meralgia paresthetica (MP) is a mononeuropathy affecting the lateral femoral cutaneous nerve. The disease is often diagnosed clinically, but electrophysiological tests play an important role. The aim of this study is to clarify clinical characteristics of MP as well as the role of sensory nerve conduction study (NCS) in the diagnosis of MP. Methods: Sixty-five consecutive patients with clinical diagnosis of MP between March 2001 and June 2012 were retrospectively reviewed at a single tertiary center. General demographics, clinical characteristics and sensory NCS findings were investigated. Measurements of sensory NCS included the baseline-to-peak amplitude, side-to-side amplitude ratio and the conduction velocity. To compare between the normal and abnormal NCS groups, independent t-tests and chisquare test were performed. Results: Sixty-five patients had male predominance (56.9%) with mean age of $48.4{\pm}13.4$ years (range: 16-75). Seven patients (13.5%) had undergone operation or procedure before the symptom onset. The sensory nerve action potentials were obtainable in 52 (80%) of 65 clinically diagnosed MP patients. Sensory NCS revealed abnormalities in 38 patients (73.1%), and others (n=14, 26.9%) showed normal findings. Between the normal and abnormal NCS groups, there is no statistically significant difference on demographics or clinical features. Conclusions: We clarify the clinical features and sensory NCS findings of MP patients. Due to several limitations of sensory NCS, the diagnosis of MP could be accomplished both clinically and electrophysiologically.

Verification of Cardiac Electrophysiological Features as a Predictive Indicator of Drug-Induced Torsades de pointes (약물의 염전성 부정맥 유발 예측 지표로서 심장의 전기생리학적 특징 값들의 검증)

  • Yoo, Yedam;Jeong, Da Un;Marcellinus, Aroli;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.19-26
    • /
    • 2022
  • The Comprehensive in vitro Proarrhythmic Assay(CiPA) project was launched for solving the hERG assay problem of being classified as high-risk groups even though they are low-risk drugs due to their high sensitivity. CiPA presented a protocol to predict drug toxicity using physiological data calculated based on the in-silico model. in this study, features calculated through the in-silico model are analyzed for correlation of changing action potential in the near future, and features are verified through predictive performance according to drug datasets. Using the O'Hara Rudy model modified by Dutta et al., Pearson correlation analysis was performed between 13 features(dVm/dtmax, APpeak, APresting, APD90, APD50, APDtri, Capeak, Caresting, CaD90, CaD50, CaDtri, qNet, qInward) calculated at 100 pacing, and between dVm/dtmax_repol calculated at 1,000 pacing, and linear regression analysis was performed on each of the 12 training drugs, 16 verification drugs, and 28 drugs. Indicators showing high coefficient of determination(R2) in the training drug dataset were qNet 0.93, AP resting 0.83, APDtri 0.78, Ca resting 0.76, dVm/dtmax 0.63, and APD90 0.61. The indicators showing high determinants in the validated drug dataset were APDtri 0.94, APD90 0.92, APD50 0.85, CaD50 0.84, qNet 0.76, and CaD90 0.64. Indicators with high coefficients of determination for all 28 drugs are qNet 0.78, APD90 0.74, and qInward 0.59. The indicators vary in predictive performance depending on the drug dataset, and qNet showed the same high performance of 0.7 or more on the training drug dataset, the verified drug dataset, and the entire drug dataset.