• Title/Summary/Keyword: Electrophoretic Velocity

Search Result 14, Processing Time 0.017 seconds

Study on the separation of large ionic-molecules by electrofiltration (전기여과에 의한 거대이온성 분자체 분리현상연구)

  • Park Young-Gyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 1998
  • Theoretical model has been derived in the electrophoretic separation system where an electric potential is applied to the system in the axial direction. The effect of electrophoretic convection in the polymeric media is significantly contributed to separate large ionic-molecules because the conformation of large ionic-molecule quickly orients in the field direction. The dependence of the transport in the polymeric media upon field intensity and molecular size aids in understanding the transport of large ionic-molecule in the system, since the convective velocity of large ionic-molecule is accelerated inside a porous material. The separation of two different large ionic-molecules is predicted with a value of $(Pe_t/Pe_g)$ of individual large ionic-molecule using an operator and the reptation theories.

Change of Protein-synthetic Patterns with Habituations of Amoeba and Planaria by the Light Stimuli (광에 대한 Amoeba 와 Planaria 의 습성화에 따른 단백질 합성유형의 변화)

  • Chang, Nam-Kee;Lim, Chae-Seong;Bae, Jin-Ho;Nam, Hyum-Joo
    • The Korean Journal of Ecology
    • /
    • v.12 no.1
    • /
    • pp.37-49
    • /
    • 1989
  • When the light stimulus was presented continuously, habituations were formed, after 13 and 14 hrs in amoeba and planaria, repectively. As amoeba more habituated, the light-escaping velocity of streaming was decreased with a negative-exponential function. in two-dimensional electrophoretic patterns of proteins of amoeba habituated, a newly synthesized protein (pI 7.0, MW 20 kD) was detected. Therefore, it is conjectured that similarity or commonality may exist between amoeba and planaria habituations to light, and in these behavioral modifications, specific protein(s) may be involved in molecular level.

  • PDF

Study of Transport Phenomena of Large Ionic - Molecules Inside Polymeric Gel (고분자젤 내에서 분자체 거동현상 연구)

  • Park, Young-G.;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • Theoretical model has been studied for the transport phenomena of molecules in the system where an electric potential is applied to the system in the axial direction. The effect of electrophoretic convection in the polymeric media is significantly contributed to separate large ionic-molecules because the conformation of large ionic-molecule quickly orients in the field direction. The dependence of the transport in the polymeric media upon field intensity and molecular size aids in understanding the transport of large ionic-molecule in the system, since the convective velocity of large ionic-molecule is accelerated inside a porous material. The transport distance of individual large ionic-molecule can be predicted using the reptation theories.

Particle-motion-tracking Algorithm for the Evaluation of the Multi-physical Properties of Single Nanoparticles (단일 나노입자의 다중 물리량의 평가를 위한 입자 모션 트랙킹 알고리즘)

  • Park, Yeeun;Kang, Geeyoon;Park, Minsu;Noh, Hyowoong;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.175-179
    • /
    • 2022
  • The physical properties of biomaterials are important for their isolation and separation from body fluids. In particular, the precise evaluation of the multi-physical properties of single biomolecules is essential in that the correlation between physical and biological properties of specific biomolecule. However, the majority of scientific equipment, can only determine specific-physical properties of single nanoparticles, making the evaluation of the multi-physical properties difficult. The improvement of analytical techniques for the evaluation of multi-physical properties is therefore required in various research fields. In this study, we developed a motion-tracking algorithm to evaluate the multi-physical properties of single-nanoparticles by analyzing their behavior. We observed the Brownian motion and electric-field-induced drift of fluorescent nanoparticles injected in a microfluidic chip with two electrodes using confocal microscopy. The proposed algorithm is able to determine the size of the nanoparticles by i) removing the background noise from images, ii) tracking the motion of nanoparticles using the circular-Hough transform, iii) extracting the mean squared displacement (MSD) of the tracked nanoparticles, and iv) applying the MSD to the Stokes-Einstein equation. We compared the evaluated size of the nanoparticles with the size measured by SEM. We also determined the zeta-potential and surface-charge density of the nanoparticles using the extracted electrophoretic velocity and the Helmholtz-Smoluchowski equation. The proposed motion-tracking algorithm could be employed in various fields related to biomaterial analysis, such as exosome analysis.