• Title/Summary/Keyword: Electronic ink

Search Result 145, Processing Time 0.023 seconds

Implementation of High Performance Micro Electrode Pattern Using High Viscosity Conductive Ink Patterning Technique (고점도 전도성 잉크 패터닝 기술을 이용한 고성능 미세전극 패턴 구현)

  • Ko, Jeong Beom;Kim, Hyung Chan;Dang, Hyun Woo;Yang, Young Jin;Choi, Kyung Hyun;Doh, Yang Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • EHD (electro-hydro-dynamics) patterning was performed under atmospheric pressure at room temperature in a single step. The drop diameter smaller than nozzle diameter and applied high viscosity conductive ink in EHD patterning method provide a clear advantage over the piezo and thermal inkjet printing techniques. The micro electrode pattern was printed by continuous EHD patterning method using 3-type control parameters (input voltage, patterning speed, nozzle pressure). High viscosity (1000cps) conductive ink with 75wt% of silver nanoparticles was used. EHD cone type nozzle having an internal diameter of $50{\mu}m$ was used for experimentation. EHD jetting mode by input voltage and applied 1st order linear regression in stable jet mode was analyzed. The stable jet was achieved at the amplitude of 1.4~1.8 kV. $10{\mu}m$ micro electrode pattern was created at optimized parameters (input voltage 1.6kV, patterning speed 25mm/sec and nozzle pressure -2.3kPa).

A Study on fabrication of the Ag fine pattern using Near Field Electro Spinning(NFES) (근접장 전기방사 방식을 이용한 Ag 미세 패턴 형성)

  • Sim, Hyo-Sun;Seo, Hwa-Il;Youn, Doo-Hyeb
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • These days, printed electronics attract attention from electronics industry. In this paper, the fabrication of the fine patterns by Near Field Electro Spinning (NFES) was studied by using Ag ink on silicon wafer (substrate). Two types of ink, the high viscous ink Ag-200 and low viscous ink Ag-15, were used. The fine and uniform patterns were easily fabricated by using Ag-200 because jet breakup is less occurred in high viscosity solution. As increasing flow rate of solution, aspect ratio of Ag pattern decreased. And there was optimum applied voltage for fine pattern. In case of Ag-200, the optimum applied voltage was about 2.02KV. When pattern was fabricated by NFES, the pattern width and height were affected by many factors such as viscosity, flow rate of solution, applied voltage etc.

Fabrication of Red and Green Phosphor Ink for the Micro LED Color Filter Using Ink-Jet Process (Micro LED 제작을 위한 Color Filter용 잉크젯 공정 적색, 녹색 형광체 잉크 연구)

  • Bo Joong Kim;Si Hong Ryu;Hyo Sil, Yang;Young Boo Moon;Chang-Bun Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.494-499
    • /
    • 2023
  • In this paper, in order to apply the CF (color filter) type of the micro light emitting device (Micro LED) display method, a study on the manufacturing process of red and green phosphor inks for the inkjet process was conducted. The blue light-emitting KSF and LuAG phosphors were respectively used to control the phosphor particle size to about 1㎛, and a phosphor ink was prepared by synthesizing with a low-viscosity solution (IPA/Eg). A chemical dispersion method was applied to selectively control the dispersion characteristics in the manufacture of phosphor inks, and in particular, phosphor inks with a dispersant applied a dispersant secured stable dispersion characteristic compared to phosphor inks without a dispersion process. Therefore, it seems possible to manufacture CF for Micro LED through an inkjet process capable of controlling the dispersion characteristics of phosphor ink.

Highly Sensitive Stretchable Electronic Skin with Isotropic Wrinkled Conductive Network

  • Seung Hwan Jeon;Hyeongho Min;Jihun Son;Tae Kon Ahn;Changhyun Pang
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.7-11
    • /
    • 2024
  • Soft-pressure sensors have numerous applications in soft robotics, biomedical devices, and wearable smart devices. Herein, we present a highly sensitive electronic skin device with an isotropic wrinkled pressure sensor. A conductive ink for soft pressure sensors is produced by a solution process using polydimethylsiloxane (PDMS), poly 3-hexylthiophene (P3HT), carbon black, and chloroform as the solvents. P3HT provides high reproducibility and conductivity by improving the ink dispersibility. The conductivity of the ink is optimized by adjusting the composition of the carbon black and PDMS. Soft lithography is used to fabricate a conductive elastic structure with an isotropic wrinkled structure. Two conductive elastic structures with an isotropic wrinkle structure is stacked to develop a pressure sensor, and it is confirmed that the isotropic wrinkle structure is more sensitive to pressure than when two elastic structures with an anisotropic wrinkle structure are overlapped. Specifically, the pressure sensor fabricated with an isotropic wrinkled structure can detect extremely low pressures (1.25 Pa). Additionally, the sensor has a high sensitivity of 15.547 kpa-1 from 1.25 to 2500 Pa and a linear sensitivity of 5.15 kPa-1 from 2500 Pa to 25 kPa.

A Study on Variation of Single Color by Applied Voltage in Multi-Electrode Type Electronic Film (다수전극형 전자종이 필름에서 인가전압에 따른 단일 컬러 가변에 관한 연구)

  • Lee, Sang-Il;Hong, Youn-Chan;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.490-495
    • /
    • 2018
  • A multielectrode electronic paper film capable of expressing a single-color image was fabricated by injecting color electronic ink into an electronic paper panel; on the basis of its reflective or transparent properties, it is possible to control the expression of six single-color images and their transmittance. In this study, a single-color image was represented by driving a multielectrode electronic paper film; color coordinates were measured. The six capable single colors were yellowish pink (0.444, 0.354), white (0.355, 0.352), black (0.241, 0.241), orange (0.514, 0.360), reddish orange (0.606, 0.338), and reddish purple (0.469, 0.145). Color particles used in this paper were black and white, by which six colors are accomplished, but more single-color images can be combined by using cyan, magenta, and yellow particles.

Environmental Life Cycle Assessments on Nano-silver Inks by Wet Chemical Reduction Process (습식환원법으로 제조한 은나노 잉크의 환경 전과정 평가)

  • Lee, Young-Sang;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.85-89
    • /
    • 2015
  • Utilized in a variety of electronic components, electronic components industry with metallic ink technology was established itself as a major technology research and development was gradually increasing, silver ink that is excellent in conductivity and stability, have long been used in the industry of electronic components in recent years and silver ink has been the size of nanoscale particles dispersed by developing display, an electronic tag, a flexible circuit board or the like used in the semiconductor and electronics as has been highlighted in, however industry modernization of equipment by increasing the production and consumption of products generated during the production process and environmental pollutants by use of waste products is expected to bring a serious environmental problem. In this study, prepared by a wet reduction method, the manufacturing process of the silver nano-ink to the entire process of the environmental impact assessment (LCA) was evaluated using the techniques. Life cycle assessment software GaBi 6 was used as received from the relevant agencies of the silver nano-ink data with reference to the manufacturing process, building inventory was international organization for standardization (ISO) 14040, 14044 compliant LCA conducted over four stages.

Fabrication of Ceramic 3D Integration Technology for Ink-jet Printing (Ink-jet Printing을 이용한 3D-Integration 구현)

  • Hwang, Myung-Sung;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Moon, Joo-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.332-332
    • /
    • 2010
  • We have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films withouWe have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films without a high temperature sintering process. In order to remove the coffee ring effect in the ink drop, we have introduced a co-solvent system in order to create Marangoni flow in the ink drop, which leads to the dense packing of ceramic powders on the substrate during inkjet process. The packing density of the Inkjet-printed $Al_2O_3$ films is around 60% (max. 70%) which is very high compared to the value obtained from the same material films by other conventional methods such as film casting, dip coating process, etc. The voids inside the films (which are around 40% of the entire film volume) are filled with the polymer resin (Cyanate ester) by the infiltration process. This resin infiltration is also implemented by the inkjet printing process right after the Ah03 film ink-jetting process. The microstructures of the printed $Al_2O_3$ films are investigated by Scanning Electron Microscope (SEM) to understand the degree of packing density in the printed films. The inkjet-printed $Al_2O_3$ films have been characterized to investigate its thickness and roughness. Quality factor of the printed $Al_2O_3$ film is also measured to be over 300 at 1MHz.

  • PDF

Application of Ink-jet Printing Technology for Fabrication of Polymer Organic TFT using P3HT(poly-3-hexylthiophene) (P3HT(poly-3-hexylthiophene)를 이용한 고분자 유기 TFT 제작을 위한 Ink-jet printing 기술 응용)

  • Kim, Jun-Young;Song, Dae-Ho;Lee, Yong-Kyun;Park, Tae-Jin;Kwon, Soon-Kab;Kang, Mun-Hyo;Lee, Sun-Hee;Han, Seung-Hoon;Cho, Sang-Mi;Kim, Jun-Hee;Jang, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.84-87
    • /
    • 2005
  • 본 논문에서는 p-type 고분자 물질인 P3HT (Poly-3-hexylthiophene)를 잉크젯 프린팅 방식으로 활성화층을 적층함으로써 Organic thin film transistor를 제작하여 이에 대한 특성을 연구하였다. Piezoelectric 방식의 잉크젯 프린팅을 이용하여 P3HT single drop jetting 시 두께 $150{\sim}200{\AA}$, 직경 약 70 ~ 80 um정도의 drop profile을 얻을 수 있었다. P3HT의 solvent로서 Chlorobenzene을 사용하여 농도 약 0.5 wt.%의 Ink-jet용 ink를 제작하여 이를 Channel Width 37, 236 um 크기의 Au 전극 위에 jetting 하여 각각의 특성을 측정하였다. 상기 실험은 상온의 외부환경에서 실시되었으며 실험 결과 최대 ${\mu}=1{\times}10^{-2}\;cm^2/Vsec$, $I_{on}/I_{off}=10^3{\sim}10^4$ 정도로서 off current가 높은 편이나 이동도 측면에서는 다른 방법의 박막 증착 실험결과와 비교할 때 동등 수준의 결과를 얻을 수 있었다.

  • PDF

Porosity Control in LSM Electrode Formation in Layered Plannar SOFC Module (적층 평판형 SOFC에서 LSM 전극의 기공 제어)

  • Lee, Won-Jun;Yeo, Dong-Hun;Shin, Hyo-Soon;Jeong, Dea-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.866-870
    • /
    • 2014
  • In solid oxide fuel cell system, yttria-stabilized zirconia is generally adopted as the electrolyte, which has high strength and superior oxygen ion conductivity, and the air electrode and the fuel electrode are attached to this. Recently, new structure of 'layered planar SOFC module' was suggested to solve the reliability problem due to the high temperature stability of a sealing agent and a binding material. In this study to materialize the air electrode in a layered planar SOFC module, the LSM ink was coated to form homogeneous electrode in the channel after the ink preparation. As the porosity control agent, PMMA or active carbon powder was adopted with use of a commercial dispersant in ethanol. The optimal amounts of both the porosity control agents and the dispersant were determined. Four (4) vol% of the dispersant for the LSM-PMMA case and 15 vol% for LSM-carbon powder showed the lowest viscosities respectively to indicate the best dispersed states of the slurries. With PMMA and carbon powder, sintered LSM ink shows the relatively homogeneous distributions of pores and with increases of the agents, the porosities increased in both cases. From this, it can be thought that the amount of the PMMA or carbon powder could be used to control the porosity of the LSM ink.

Study on the characteristics of transpatent electronic Ag (20%) ink by sintering conditions (투명전자잉크 Ag(20%)의 소성조건에 따른 특성 연구)

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.78-79
    • /
    • 2009
  • We have investigated low temperature sintering characteristics of organic Ag complex. Organic Ag complex was coated on the glass substrate by spin coating method. The coated Ag complex was sintered in an air atmosphere. The sintering temperature was varied from 30 to $80^{\circ}C$ and sintering time was varied from 1 to 228 hour. The sheet resistance was abruptly changed at $80^{\circ}C$-6h, $65^{\circ}C$-24h, $30^{\circ}C$-228 hour and the thickness of the coated film was significantly decreased. The sheet resistance of Ag films were about $0.53\;{\Omega}/{\square}$ at the $80^{\circ}C$ - 12hour.

  • PDF