• Title/Summary/Keyword: Electronic energy level alignment

Search Result 12, Processing Time 0.043 seconds

Energy-level alignment and charge injection at electrodeorganic interfaces

  • Helander, M.G.;Wang, Z.B.;Lu, Z.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.112-114
    • /
    • 2009
  • Charge injection at electrode-organic interfaces is key to the performance, lifetime and stability of organic electronic devices. The link between fundamental material properties and the energy-level alignment at electrode-organic interfaces will be discussed. In addition the impact of the injection barrier height-a parameterization of the energylevel alignment-on device characteristics will also be discussed.

  • PDF

Energy Level Alignment between Hole Injecting HAT-CN and Metals and Organics: UPS and ab-initio Calculations

  • Kang, H.;Kim, J.H.;Kim, J.K.;Kwon, Y.K.;Kim, J.W.;Park, Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.108-111
    • /
    • 2009
  • We have determined the electronic energy level alignment at the interface between 4,4'-bis-N-phenyl-1-naphthylamino biphenyl (NPB) and 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT-CN) using ultraviolet photoelectron spectroscopy (UPS). The highest occupied molecular orbital (HOMO) of 20 nm thick HAT-CN film was located at 3.8 eV below the Fermi level. Thus the lowest unoccupied molecular orbital (LUMO) is very close to the Fermi level. The HOMO position of NPB was only about 0.3 eV below Fermi level at NPB/HAT-CN interface. This enables an easy excitation of electrons from the NPB HOMO to the HAT-CN LUMO, creating electron-hole pairs across this organic-organic interface. We also study the interaction of HAT-CN with a few metallic surfaces including Ca, Cu, and ITO using UPS and ab-inito electronic structure calculation techniques.

  • PDF

Soft X-ray Spectroscopy of ClAlPc/Pentacene/ITO Interfaces: Role of ClAlPc on Energetic Band Alignment

  • Kim, Min-Su;Heo, Na-Ri;Lee, Sang-Ho;Jo, Sang-Wan;Smith, Kevin E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.190.1-190.1
    • /
    • 2014
  • The interfacial electronic structure of a bilayer of chloroaluminum phthalocyanine (ClAlPc) and pentacene grown on indium tin oxide (ITO) has been studied using synchrotron radiation-excited photoelectron spectroscopy. The energy difference between the highest occupied molecular orbital (HOMO) level of the pentacene layer and the lowest unoccupied molecular orbital (LUMO) level of the ClAlPc layer (EDHOMO - EALUMO) was determined and compared with that of C60/pentacene bilayers. The EDHOMO - EALUMO of a heterojunction with ClAlPc was found to be 1.4 eV, while that with C60 was 1.0 eV. This difference is discussed in terms of the difference of the ionization energy of each acceptor materials. We also obtained the complete energy level diagrams of ClAlPc/pentacene/ITO and C60/pentacene/ITO, respectively.

  • PDF

Interfacial Electronic Structures of Poly[N-9''-hepta-decanyl-2,7-carbazole-alt- 5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] and [6,6]-phenyl C60 Butyric Acid Methyl Ester

  • Lee, Jung-Han;Seo, Jung-Hwa;Schlaf, Rudy;Kim, Kyoung-Joong;Yi, Yeon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.277-277
    • /
    • 2012
  • PCDTBT (Poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]) is an attractive material as a semiconducting polymer for organic thin film transistor (OTFT) and organic solar cell (OSC). High power conversion efficiency (~6%) under simulated AM 1.5G solar illumination of bulk-heterojunction solar cell with PCDTBT and [6,6]-phenyl C60 butyric acid methyl ester (PC61BM) blend was reported. In OSC, it is known that the band alignment at the interface between donor and acceptor is critical. Therefore, we studied the interfacial electronic structures of PCDTBT and PC61BM. The polymers are deposited by electro-spray on gold and In-situ x-ray and ultraviolet photoelectron spectroscopy measurements revealed the interfacial electronic structures. We obtained the energy level alignment between two materials and the different interface formation was observed with different deposition order.

  • PDF

Solution-Processed Quantum-Dots Light-Emitting Diodes with PVK/PANI:PSS/PEDOT:PSS Hole Transport Layers

  • Park, Young Ran;Shin, Koo;Hong, Young Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.146-146
    • /
    • 2015
  • We report the enhanced performance of poly(N-vinylcarbozole) (PVK)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based quantum-dot light-emitting diodes by inserting the polyaniline:poly (p-styrenesulfonic acid) (PANI:PSS) interlayer. The QD-LED with PANI:PSS interlayer exhibited a higher luminance and luminous current efficiency than that without PANI:PSS. Ultraviolet photoelectron spectroscopy results exhibited different electronic energy alignments of QD-LEDs with/without the PANI:PSS interlayer. By inserting the PANI:PSS interlayer, the hole-injection barrier at the QD layer/PVK interface was reduced from 1.45 to 1.23 eV via the energy level down-shift of the PVK layer. The reduced barrier height alleviated the interface carrier charging responsible for the deterioration of the current and luminance efficiency. This suggests that the insertion of PANI:PSS interlayer in QD-LEDs contributed to (i) increase the p-type conductivity and (ii) reduce the hole barrier height of QDs/PVK, which are critical factors leading to improve the efficiency of QD-LEDs.

  • PDF

Probing the Molecular Orientation of ZnPc on AZO Using Soft X-ray Spectroscopies for Organic Photovoltaic Applications

  • Jung, Yunwoo;Lee, Nalae;Kim, Jonghoon;Im, Yeong Ji;Cho, Sang Wan
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.151-155
    • /
    • 2015
  • The interfacial electronic structure between zinc phthalocyanine (ZnPc) and aluminumdoped zinc oxide (AZO) substrates has been evaluated by ultraviolet photoemission spectroscopy and angle-dependent x-ray absorption spectroscopy to understanding the molecular orientation of a ZnPc layer on the performance of small molecule organic photovoltaics (OPVs). We find that the ZnPc tilt angle improves the ${\pi}-{\pi}$ interaction on the AZO substrate, thus leading to an improved short-circuit current in OPVs based on phthalocyanine. Furthermore, the molecular orientation-dependent energy level alignment has been analyzed in detail using ultraviolet photoemission spectroscopy. We also obtained complete energy level diagrams of ZnPc/AZO and ZnPc/indium thin oxide.

Study of Energy Level Alignment at the Interface of P3HT and PCBM Bilayer Deposited by Electrospray Vacuum Deposition

  • Kim, Ji-Hoon;Hong, Jong-Am;Seo, Jae-Won;Kwon, Dae-Gyoen;Park, Yong-Sup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.134-134
    • /
    • 2012
  • We investigated the interface of poly (3-hexylthiophene) (P3HT) and C61-butyric acid methylester (PCBM) by using photoelectron spectroscopy (PES). These are the most widely used materials for bulk heterojunction (BHJ) organic solar cells due to their high efficiency. Study of the BHJ interfaces is difficult because the organic films are typically prepared by spin coating in ambient conditions. This is incompatible with the interface electronic structure probes such as PES, which requires ultrahigh vacuum conditions. Study of interface requires gradual deposition of thin films that is also incompatible with the spin coating process. In this work, we used electrospray vacuum deposition (EVD) technique to deposit P3HT and PCBM in high vacuum conditions. EVD allows us to form polymer thin films onto ITO substrate in a step-wise manner directly from solutions and to use PES without exposing the sample to the ambient condition. Although the morphology of the EVD deposited P3HT films observed by optical and atomic force microscopes is quite different from that of the spin coated ones, the valence region spectra were similar. PCBM was deposited on the P3HT film in a similar manner and the energy level alignment between these two materials was studied. We discuss the relation between Voc of P3HT:PCBM solar cell and HOMO-LUMO energy offset obtained in this study.

  • PDF

Photoelectron Spectroscopy Studies of the Electronic Structures of Al/RbF and $Al/CaF_2$ Cathodes for $Alq_3$-based Organic Light-emitting Devices

  • Park, Yong-Sup;Lee, Jou-Hahn
    • Journal of Information Display
    • /
    • v.6 no.1
    • /
    • pp.28-32
    • /
    • 2005
  • The electronic structures of Al/RbF/tris-(8-hydroxyquinoline)aluminium ($Alq_3$) and $Al/CaF_2/Alq_3$interfaces were investigated using x-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). For both systems, the UPS showed a significant valence band shift following the deposition of the thin fluoride layers on $Alq_3$. However, the formation of gap state in valence region and the extra peak N 1s core level spectra showed different trends, suggesting that the alkali fluoride and alkali-earth fluoride interlayer have different reaction mechanisms at the interface between Al cathode and $Alq_3$. In addition, the deposition of Al has considerably less effect on the valence band shift compared to the deposition of both RbF and $CaF_2$. These results suggest that the charge transfer across the interface and the resulting gap state formation may have lesser effect on the enhancement of organic light-emitting device performance than the observed valence band shift, which is thought to lower the electron injection barrier.

The effect of surface treatment on interface formation between pentacene and polymer dielectrics

  • Han, Seung-Jin;Kim, Jae-Hoon;Park, Yong-Sup;Back, Kyu-Ha;Kim, Gi-Heon;Hong, Sa-Hwan;Kim, Dal-Hyun;Kim, Jeong-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1415-1418
    • /
    • 2007
  • Electronic and structural properties of the interfaces formed by pentacene deposited on a polymer-based dielectrics are investigated by electron spectroscopy, atomic force microscopy, and water contact angle measurement. There is strong influence of surface treatment of the polymer dielectrics on the energy level alignment and the surface topography upon the pentacene deposition.

  • PDF

The Interfacial Electronic Structure of Organic-organic Heterojunction: Effect of Molecular Orientation

  • Jo, Sang-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.114.2-114.2
    • /
    • 2014
  • The orientation of the constituent molecules in organic thin film devices can affect significantly their performance due to the highly anisotropic nature of ${\pi}$-conjugated molecules. We report here an angle dependent x-ray absorption study of the control of such molecular orientation using well-ordered interlayers for the case of a bilayer heterojunction of chloroaluminum phthalocyanine (ClAlPc) and C60. Furthermore, the orientation-dependent energy level alignment of the same bilayer heterojunction has been measured in detail using synchrotron radiation-excited photoelectron spectroscopy. Regardless of the orientation of the organic interlayer, we find that the subsequent ClAlPc tilt angle improves the ${\pi}-{\pi}$ interaction at the interface, thus leading to an improved short-circuit current in photovoltaic devices based on ClAlPc/C60. The use of the interlayers does not change the effective band gap at the ClAlPc/C60 heterointerface, resulting in no change in open-circuit voltage.

  • PDF