• Title/Summary/Keyword: Electronic effect

Search Result 6,263, Processing Time 0.05 seconds

Electric conduction mechanism Analysis of AW Thin Films using XPS Measurement (XPS 분석에 의한 AZO 박막의 전기전도 메커니즘 해석)

  • Jin, Eun-Mi;Kim, Kyeong-Min;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.446-447
    • /
    • 2007
  • Aluminisum-doped zinc oxide (AZO) films are attractive materials as transparent conductive electrode because they are inexpensive, nontoxic and abundant element compared with indium tin oxide (ITO). In our paper, AZO films have been deposited on glass (coming 1737) substrates by RF magnetron sputtering. The AZO film was post-annealed at $600^{\circ}C$, $800^{\circ}C$ for 2 hr with $N_2$ atmosphere, respectively. We investigated that the electric properties and qualitative analysis of AZO films, which measured using the methods of Hall effect, X-ray photoelectron spectroscopy (XPS).

  • PDF

An effect of Radiation Heat Transfer on the Thermal Dissipation from the Electronic Chip in an Enclosure (밀폐공간에 놓인 전자 칩의 열발산에 복사 열전달이 미치는 영향)

  • Choi, In-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.4
    • /
    • pp.179-186
    • /
    • 2009
  • Electronic components in an enclosure have been investigated to prevent undesired thermal problems. The electronic devices, such as ECUs of automotive engines, are operated under the contaminated environments, so that they rely on the passive cooling without any fluid-driving methods. Therefore the radiation heat dissipation plays more important role than the conduction and convection heat transfer. Hence their combined heat dissipation phenomena have been simulated by a numerical model to reveal the effects of supplied heat flux, emissivity of material, geometry of enclosure, charging gas and pressure. The result showed that the radiation had a significant effect on the heat dissipation of module in an enclosure, and some space above the module should be reserved to prevent its thermal problem. In addition, the higher thermal conductivity and pressure of gas in an enclosure could be necessary to improve the thermal dissipation from the electronic devices.

  • PDF

Electrical Properties with Varying CuPc Thickness and Channel Length of the Field-effect Transistor (CuPc 두께 변화 및 채널 길이 변화에 따른 전계 효과 트랜지스터의 전기적 특성 연구)

  • Lee, Ho-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • Organic field-effect transistors (OFETS) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with varying channel length. The CuPc FET device was made a top-contact type and the channel length was a $100\;{\mu}m,\;50\;{\mu}m,\;40\;{\mu}m,\;and\;30\;{\mu}m$ and the channel width was a fixed at 3 mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with varying channel length (L) and we calculated the effective mobility. Also, we measured a capacitance-voltage (C-V) by applied bias voltage with varying frequency at 43, 100, 1000 Hz.

Effect of Electric Frequency on the Partial Discharge Resistance of Epoxy Systems with Two Diluents

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.317-320
    • /
    • 2013
  • Partial discharge resistance for the epoxy systems with two diluents was investigated in the rod-plane electrodes arrangement, and the effect of electric frequency on the partial discharge resistance was also studied. Diglycidyl ether of bisphenol A (DGEBA) type epoxy was used as a base resin, and 1,4-butanediol diglycidyl ether (BDGE) or polyglycol (PG) as a reactive diluent was introduced to the DGEBA system, in order to decrease the viscosity of the DGEBA epoxy system. BDGE was acted as a chain extender, and PG acted as a flexibilizer, after the curing reaction. To measure the partial discharge resistance, 5 kV alternating current (ac) with three different frequencies (60, 500 and 1,000 Hz) was applied to the specimen in a rod-plane electrode arrangement, at $30^{\circ}C$. PG had a good effect, while BDGE had a bad effect on the partial discharge resistance of the DGEBA system, regardless of the electric frequency.

Electrical Properties of CuPc Field-effect Transistor with Different Electrodes (전극에 따른 CuPc Field-effect Transistor의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.930-933
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40 nm, and the channel length was $50{\mu}m$, channel width was 3 mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

Effective Channel Mobility of AlGaN/GaN-on-Si Recessed-MOS-HFETs

  • Kim, Hyun-Seop;Heo, Seoweon;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.867-872
    • /
    • 2016
  • We have investigated the channel mobility of AlGaN/GaN-on-Si recessed-metal-oxide-semiconductor-heterojunction field-effect transistors (recessed-MOS-HFET) with $SiO_2$ gate oxide. Both field-effect mobility and effective mobility for the recessed-MOS channel region were extracted as a function of the effective transverse electric field. The maximum field effect mobility was $380cm^2/V{\cdot}s$ near the threshold voltage. The effective channel mobility at the on-state bias condition was $115cm^2/V{\cdot}s$ at which the effective transverse electric field was 340 kV/cm. The influence of the recessed-MOS region on the overall channel mobility of AlGaN/GaN recessed-MOS-HFETs was also investigated.

Electrical Properties of CuPc Field-effect Transistor with Different Electrodes (전극 변화에 따른 CuPc Field-effect Transistor의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.506-507
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel device was width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

Electrical Properties of CuPc Field-effect Transistor with Different Electrodes (전극에 따른 CuPc Field-effect Transistor의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.12-13
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

Electrical Properties of CuPc Field-effect Transistor with Different Metal Electrodes (금속 전극 변화에 따른 CuPc Field-effect Transistor의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.494-495
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

The Influence of Cardiovascular system caused by warming effect of Far-infrared radiation

  • Lee, Hai-Kwang;Kang, Se-Gu;Lee, Chung-Keun;Jang, Yoon-Ho;Kim, Sung-Joong;Lee, Myoung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2221-2225
    • /
    • 2003
  • As a result of using a heat generator to experiment the physiological influence of the human body due to the warming effect of far-infrared radiation (FIR), the blood pressure of the subjects lowered and stabilized due the expansion of capillary vessels and salt discharge during perspiration as the temperature of the generator elevated($30{\sim}65^{\circ}C$). In case of heart rate, it decreased and stabilized when the temperature of the ‘far-infrared radiation heat generator’ was at a low temperature below $40^{\circ}C$. At a high temperature above $44^{\circ}C$, there was a slow elevation in the heart rate. However, the elevation of the heart rate is not a sudden elevation, therefore, does not give much stress to the heart.

  • PDF