• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.031 seconds

MXene Based Composite Membrane for Water Purification and Power Generation: A Review (정수 및 발전을 위한 맥신(MXene) 복합막에 관한 고찰)

  • Seohyun Kim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.181-190
    • /
    • 2023
  • Wastewater purification is one of the most important techniques for controlling environmental pollution and fulfilling the demand for freshwater supply. Various technologies, such as different types of distillations and reverse osmosis processes, need higher energy input. Capacitive deionization (CDI) is an alternative method in which power consumption is deficient and works on the supercapacitor principle. Research is going on to improve the electrode materials to improve the efficiency of the process. A reverse electrodialysis (RED) is the most commonly used desalination technology and osmotic power generator. Among many studies conducted to enhance the efficiency of RED, MXene, as an ion exchange membrane (IEM) and 2D nanofluidic channels in IEM, is rising as a promising way to improve the physical and electrochemical properties of RED. It is used alone and other polymeric materials are mixed with MXene to enhance the performance of the membrane further. The maximum desalination performances of MXene with preconditioning, Ti3C2Tx, Nafion, and hetero-structures were respectively measured, proving the potential of MXene for a promising material in the desalination industry. In terms of osmotic power generating via RED, adopting MXene as asymmetric nanofluidic ion channels in IEM significantly improved the maximum osmotic output power density, most of them surpassing the commercialization benchmark, 5 Wm-2. By connecting the number of unit cells, the output voltage reaches the point where it can directly power the electronic devices without any intermediate aid. The studies around MXene have significantly increased in recent years, yet there is more to be revealed about the application of MXene in the membrane and osmotic power-generating industry. This review discusses the electrodialysis process based on MXene composite membrane.

A Study of Assessment for College Students' Usage Patterns and Usability Testing of E-book Subscription Services (대학생의 전자책 구독 서비스 이용 실태 및 사용성 평가)

  • Hye-Won Shin;Dong-Hee Shin
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.3
    • /
    • pp.245-271
    • /
    • 2023
  • The purpose of this study was to assess the perception of e-book subscription services among the digitally native generation in their twenties, who have a high e-book usage rate. This study employed a mixed-methods approach, combining survey responses and usability testing. It aimed to assess the awareness and usage of e-book subscription services among university students in their twenties, a demographic known for their high utilization of electronic devices and e-books. The survey was conducted among 202 university students, and the responses were categorized and examined based on whether they were users or non-users. As a result of the survey, I found there is different awareness of e-book between users and non-users, on the other hand, convenience and portability are the strong point of e-books for users and non-users commonly also. Usability testing was performed on a group of 10 university students in their twenties who had not previously used the 'Millies Library' application, which is renowned as the most widely-used e-book platform. Following the experiment, participants expressed positive feedback regarding various optional features, convenience, design, and cost-effectiveness. However, they also had negative reactions concerning touch errors, malfunctions, functional practicality, a lack of interest, system issues, and the absence of a library.

Improving Lifetime Prediction Modeling for SiON Dielectric nMOSFETs with Time-Dependent Dielectric Breakdown Degradation (SiON 절연층 nMOSFET의 Time Dependent Dielectric Breakdown 열화 수명 예측 모델링 개선)

  • Yeohyeok Yun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.173-179
    • /
    • 2023
  • This paper analyzes the time-dependent dielectric breakdown(TDDB) degradation mechanism for each stress region of Peri devices manufactured by 4th generation VNAND process, and presents a complementary lifetime prediction model that improves speed and accuracy in a wider reliability evaluation region compared to the conventional model presented. SiON dielectric nMOSFETs were measured 10 times each under 5 constant voltage stress(CVS) conditions. The analysis of stress-induced leakage current(SILC) confirmed the significance of the field-based degradation mechanism in the low electric field region and the current-based degradation mechanism in the high field region. Time-to-failure(TF) was extracted from Weibull distribution to ascertain the lifetime prediction limitations of the conventional E-model and 1/E-model, and a parallel complementary model including both electric field and current based degradation mechanisms was proposed by extracting and combining the thermal bond breakage rate constant(k) of each model. Finally, when predicting the lifetime of the measured TDDB data, the proposed complementary model predicts lifetime faster and more accurately, even in the wider electric field region, compared to the conventional E-model and 1/E-model.

Implementation of A Monitoring System using Image Data and Environment Data (영상정보와 환경정보를 이용한 실내 공간 모니터링 시스템 구현)

  • Cha, Kyung-Ae;Kwon, Cha-Uk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The objective of this study is to design a system that automatically monitors the state of interior spaces like offices where lots of people are coming and going through image data and environment data, which includes temperature, humidity, and other conditions, and implement and test related application programs. In practice, there are lots of image data automatically obtained by unmanned equipments, such as certain types of CCTVs, for monitoring situation in usual interior spaces. This image data can be used as a more effective manner by establishing a system that recognizes situation in specific interior spaces based on the relationship between image and environment data. For instance, it is possible to perform unmanned on/off controls for various electronic equipments, such as air conditioners, lights, and other devices, through analyzing the data acquisited from environment sensors (temperature, humidity, and illumination) as dynamic states are not maintained for a specified period of time. For implementing these controls, this study analyzes environment data acquisited from temperature and humidity sensors and image data input from wireless cameras to recognize situation and that can be used to automatically control environment variables configured by users. Experiments were applied in a laboratory where unmanned controls were effectively performed as automatic on/off controls for the air conditioner and lights installed in the laboratory as certain motions were detected or undetected for a specified period of time.

“Aluminium Nitride Technology-a review of problems and potential"

  • Dryburgh, Peter M.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.75-87
    • /
    • 1996
  • This review is presented under the following headings: 1.Introduction 1.1 Brief review of the properties of AlN 1.2 Historical survey of work on ceramic and single crystal AlN 2.Thermochemical background 3.Crystal growth 4.Doping 5.Potential applications and future work The known properties of AlN which make it of interest for various are discussed briefly. The properties include chemical stability, crystal structure and lattice constants, refractive indices and other optical properties, dielectric constant, surface acoustic wave velocity and thermal conductivity. The history of work in single crystals, thin films and ceramics are outlined and the thermochemistry of AlN reviewed together with some of the relevant properties of aluminium and nitrogen; the problems encountered in growing crystals of AlN are shown to arise directly from these thermochemical relationships. Methods have been reported in the literature for growing AlN crystals from melts, solution and vapour and these methods are compared critically. It is proposed that the only practicable approach to the growth of AlN is by vapour phase methods. All vapour based procedures share the share the same problems: $.$the difficulty of preventing contamination by oxygen & carbon $.$the high bond energy of molecular nitrogen $.$the refractory nature of AlN (melting point~3073K at 100ats.) $.$the high reactivity of Al at high temperatures It is shown that the growth of epitactic layers and polycrystalline layers present additional problems: $.$chemical incompatibility of substrates $.$crystallographic mismatch of substrates $.$thermal mismatch of substrates The result of all these problems is that there is no good substrate material for the growth of AlN layers. Organometallic precursors which contain an Al-N bond have been used recently to deposit AlN layers but organometallic precursors gave the disadvantage of giving significant carbon contamination. Organometallic precursors which contain an Al-N bound have been used recently to deposit AlN layers but organometallic precursors have the disadvantage of giving significant carbon contamination. It is conclude that progress in the application of AlN to optical and electronic devices will be made only if considerable effort is devoted to the growth of larges, pure (and particularly, oxygen-free) crystals. Progress in applications of epi-layers and ceramic AlN would almost certainly be assisted also by the availability of more reliable data on the pure material. The essential features of any stategy for the growth of AlN from the vapour are outlined and discussed.

  • PDF

Analysis of Crushing/Classification Process for Recovery of Black Mass from Li-ion Battery and Mathematical Modeling of Mixed Materials (폐배터리 블랙 매스(black mass) 회수를 위한 파쇄/분급 공정 분석 및 2종 혼합물의 수학적 분쇄 모델링)

  • Kwanho Kim;Hoon Lee
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.81-91
    • /
    • 2022
  • The use of lithium-ion batteries increases significantly with the rapid spread of electronic devices and electric vehicle and thereby an increase in the amount of waste batteries is expected in the near future. Therefore, studies are continuously being conducted to recover various resources of cathode active material (Ni, Co, Mn, Li) from waste battery. In order to recover the cathode active material, black mass is generally recovered from waste battery. The general process of recovering black mass is a waste battery collection - discharge - dismantling - crushing - classification process. This study focus on the crushing/classification process among the processes. Specifically, the particle size distribution of various samples at each crushing/classification step were evaluated, and the particle shape of each particle fraction was analyzed with a microscope and SEM (Scanning Electron Microscopy)-EDS(Energy Dispersive Spectrometer). As a result, among the black mass particle, fine particle less than 74 ㎛ was the mixture of cathode and anode active material which are properly liberated from the current metals. However, coarse particle larger than 100 ㎛ was present in a form in which the current metal and active material were combined. In addition, this study developed a PBM(Population Balance Model) system that can simulate two-species mixture sample with two different crushing properties. Using developed model, the breakage parameters of two species was derived and predictive performance of breakage distribution was verified.

Real-time Monocular Camera Pose Estimation using a Particle Filiter Intergrated with UKF (UKF와 연동된 입자필터를 이용한 실시간 단안시 카메라 추적 기법)

  • Seok-Han Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.315-324
    • /
    • 2023
  • In this paper, we propose a real-time pose estimation method for a monocular camera using a particle filter integrated with UKF (unscented Kalman filter). While conventional camera tracking techniques combine camera images with data from additional devices such as gyroscopes and accelerometers, the proposed method aims to use only two-dimensional visual information from the camera without additional sensors. This leads to a significant simplification in the hardware configuration. The proposed approach is based on a particle filter integrated with UKF. The pose of the camera is estimated using UKF, which is defined individually for each particle. Statistics regarding the camera state are derived from all particles of the particle filter, from which the real-time camera pose information is computed. The proposed method demonstrates robust tracking, even in the case of rapid camera shakes and severe scene occlusions. The experiments show that our method remains robust even when most of the feature points in the image are obscured. In addition, we verify that when the number of particles is 35, the processing time per frame is approximately 25ms, which confirms that there are no issues with real-time processing.

Study on the Morphologies and Electrical Properties in Polymer Blend Thin-Films Based on Two Poly(3-hexylthiophene) Conjugated Polymers with Different Regio-regularities (서로 다른 위치 규칙성을 가지는 두 개의 Poly(3-hexylthiophene) 공액 고분자를 기반으로 한 고분자 복합 박막의 구조와 전기적 특성에 대한 연구)

  • Ganghoon Jeong;Nann Aye Mya Mya Phu;Rae-Su Park;Jeong Woo Yun;Yeongun Ko;Mincheol Chang
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.349-354
    • /
    • 2023
  • Poly(3-hexylthiophene) (P3HT) is a conjugated polymer that is highly soluble in organic solvents and is readily available. However, its electrical properties as an active channel in electronic devices are not enough for practical applications, necessitating further improvement in the properties. In this study, we demonstrate that the blending of two P3HT polymers (i.e., regio-regular (RR) P3HT and regio-random (RRa) P3HT) with different regioregularities can significantly improve charge transport characteristics of the blend films. The morphological and electrical properties of the blend films were systematically investigated by varying the ratio between two P3HT polymers. Atomic force microscopy (AFM), X-ray diffraction (XRD), and UV-visible absorption spectroscopy (UV-vis) were employed to evaluate the morphological and optoelectronic properties of the blend films. The crystallinity of the blend films increased with increasing the content of RRa-P3HT to 20 wt% and gradually decreased as the content increased to 80%. Consistently, the highest charge carrier mobility was obtained from the blend films containing 20 wt% RRa-P3HT, which value was measured to be 0.029 cm2/V·s. The values gradually decreased to 0.0007 cm2/V·s with increasing the content of RRa-P3HT to 80 wt%.

Field-effect Transistors Based on a Van der Waals Vertical Heterostructure Using CVD-grown Graphene and MoSe2 (화학기상증착법을 통해 합성된 그래핀 및 MoSe2를 이용한 반데르발스 수직이종접합 전계효과 트랜지스터)

  • Seon Yeon Choi;Eun Bee Ko;Seong Kyun Kwon;Min Hee Kim;Seol Ah Kim;Ga Eun Lee;Min Cheol Choi;Hyun Ho Kim
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.100-104
    • /
    • 2023
  • Van der Waals heterostructures have garnered significant attention in recent research due to their excellent electronic characteristics arising from the absence of dangling bonds and the exclusive reliance on Van der Waals forces for interlayer coupling. However, most studies have been confined to fundamental research employing the Scotch tape (mechanical exfoliation) method. We fabricated Van der Waals vertical heterojunction transistors to advance this field using materials exclusively grown via chemical vapor deposition (CVD). CVDgrown graphene was patterned through photolithography to serve as electrodes, while CVD-grown MoSe2 was employed as the pickup/transfer material, resulting in the realization of Van der Waals heterojunction transistors with interlayer charge transfer effects. The electrical characteristics of the fabricated devices were thoroughly examined. Additionally, we observed variations in the transistor's performance based on the presence of defects in MoSe2 layer.

A Study on Determinants of Showrooming in the Context of Omni-channel: Focusing on Mobile Technology and User Characteristics (옴니채널에서 쇼루밍의 결정요인 연구: 모바일 기술과 이용자 특성을 중심으로)

  • Juyeon Ham;Sujeong Choi
    • Information Systems Review
    • /
    • v.26 no.1
    • /
    • pp.385-407
    • /
    • 2024
  • This study explains consumers' showrooming which refers to the activities of visiting offline stores to check products in person and obtaining information offline and online via mobile devices before making the final decision to buy. More specifically, this study verifies key determinants of showrooming based on two dimensions of the mobile technology and user characteristics. Furthermore, the study examines the relationship of showrooming and purchase intentions and the moderating effect of perceived risks on the relationship. The key findings are as follows: firstly, service connectivity and time convenience of the mobile technology characteristics are positively related to showroming. Secondly, as the user characteristics, need for touch and personal innovativeness increase showrooming while impulsiveness does not. Thirdly, showrooming contributes to the increase of purchase intentions. Finally, moderating effect of perceived risks has turned out to be insignificant. This study has implications by providing the understanding of key determinants of showrooming and further proving the positive relationship of showrooming and purchase intentions.