• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.028 seconds

A Brief Review on Recent Developments in MAPbI3 Perovskite-Based Transistors

  • Padi, Siva Parvathi;Kim, Taeyong;Rabelo, Matheus;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.348-356
    • /
    • 2021
  • Field-effect transistors (FETs) are the key elements of conventional electronics; hence, have drawn a lot of research and commercial interests. In recent years, metal halide perovskite materials have achieved a remarkable efficiency of 29.15% in the field of photovoltaics, and have drawn the scientific community's attention to promote their use in the field of optoelectronics, such as FETs and phototransistors. The MAPbI3 (methylammonium lead iodide) perovskite TFT has achieved a record hole mobility of 21.41 cm2/V-s in the year 2020. In this review, we will briefly discuss the physical structure of MAPbI3 perovskite and the essential factors that stimulate these devices, together with the role of defects, the ion migration concept, and the implication of both dielectric and electrode materials on the device's performance.

A Probabilistic Tensor Factorization approach for Missing Data Inference in Mobile Crowd-Sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.63-72
    • /
    • 2021
  • Mobile crowd-sensing (MCS) is a promising sensing paradigm that leverages mobile users with smart devices to perform large-scale sensing tasks in order to provide services to specific applications in various domains. However, MCS sensing tasks may not always be successfully completed or timely completed for various reasons, such as accidentally leaving the tasks incomplete by the users, asynchronous transmission, or connection errors. This results in missing sensing data at specific locations and times, which can degrade the performance of the applications and lead to serious casualties. Therefore, in this paper, we propose a missing data inference approach, called missing data approximation with probabilistic tensor factorization (MDI-PTF), to approximate the missing values as closely as possible to the actual values while taking asynchronous data transmission time and different sensing locations of the mobile users into account. The proposed method first normalizes the data to limit the range of the possible values. Next, a probabilistic model of tensor factorization is formulated, and finally, the data are approximated using the gradient descent method. The performance of the proposed algorithm is verified by conducting simulations under various situations using different datasets.

Improvement of Electrical Characteristics of MOSFETs Using High Pressure Deuterium Annealing (고압 중수소 열처리에 의한 MOSFETs의 특성 개선에 대한 연구)

  • Jung, Dae-Han;Ku, Ja-Yun;Wang, Dong-Hyun;Son, Young-Seo;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.264-268
    • /
    • 2022
  • High pressure deuterium (HPD) annealing is an advancing technology for the fabrication of modern semiconductor devices. In this work, gate-enclosed FETs are fabricated on a silicon substrate as test vehicles. After a cycle for the HPD annealing, the device parameters such as threshold voltage (VTH), subthreshold swing (SS), on-state current (ION), off-state current (IOFF), and gate leakage (IG) were measured and compared depending on the HPD. The HPD annealing can passivate the dangling bonds at Si-SiO2 interfaces as well as eliminate the bulk trap in SiO2. It can be concluded that adding the HPD annealing as a fabrication process is very effective in improving device reliability, performance, and variability.

Water-Sloshing-Based Electricity Generating Device via Charge Separation and Accumulation (전하 분리와 축적을 통한 물의 슬로싱 현상 기반 전기에너지 발생 장치)

  • Cha, Kyunghwan;Heo, Deokjae;Lee, Sangmin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.98-101
    • /
    • 2022
  • Liquid-based Triboelectric nanogenerator (L-TENG) is one of the alternatives to solid-based Triboelectric nanogenerator (S-TENG) because of the absence of surface damage which can decrease the durability of the generator. However, the L-TENG also has an obvious drawback of significantly lower output than that of S-TENG. This article produces water-sloshing-based electricity generating device (W-ED) with a new design of L-TENG that improves electrical output in portable form. The dual-electrode system, consisting of closed-loop circuit and inner electrode which enables water to contact directly in the bottle, can generate the open-circuit voltage and the short-circuit current of up to 348 V and 5.1 mA, respectively. By investigating the motion of water for each frequency, we propose that W-ED is suitable device for a variety of human motions. We expect that W-ED can be applied in small electrical devices or sensors in daily-use items.

Object Recognition Technology using LiDAR Sensor for Obstacle Detection of Agricultural Autonomous Robot (LiDAR 센서 활용 객체 인식기술이 적용된 농업용 자율주행 이송 로봇 개발)

  • Kim, Jong-Sil;Ju, Yeong-Tae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.565-570
    • /
    • 2021
  • Agriculture in South Korea is losing productivity due to the lack of manpower as aging population increases. To overcome this, the agricultural robot market is growing rapidly, and research is being conducted on remote control and autonomous driving of agricultural robots. This work designs the appearance and structure of agricultural robots and implements the devices and control systems for driving. By utilizing and optimizing LiDAR sensors, we applied object recognition technology, which is an essential function for autonomous driving. This can reduce labor costs and improve productivity of transportation tasks that require the most labor in agriculture.

A Study of Lightening SRGAN Using Knowledge Distillation (지식증류 기법을 사용한 SRGAN 경량화 연구)

  • Lee, Yeojin;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1598-1605
    • /
    • 2021
  • Recently, convolutional neural networks (CNNs) have been widely used with excellent performance in various computer vision fields, including super-resolution (SR). However, CNN is computationally intensive and requires a lot of memory, making it difficult to apply to limited hardware resources such as mobile or Internet of Things devices. To solve these limitations, network lightening studies have been actively conducted to reduce the depth or size of pre-trained deep CNN models while maintaining their performance as much as possible. This paper aims to lighten the SR CNN model, SRGAN, using the knowledge distillation among network lightening technologies; thus, it proposes four techniques with different methods of transferring the knowledge of the teacher network to the student network and presents experiments to compare and analyze the performance of each technique. In our experimental results, it was confirmed through quantitative and qualitative evaluation indicators that student networks with knowledge transfer performed better than those without knowledge transfer, and among the four knowledge transfer techniques, the technique of conducting adversarial learning after transferring knowledge from the teacher generator to the student generator showed the best performance.

Structural, Electrical, and Optical Properties of AGZO Thin Films Using RF Magnetron Sputtering System Under Ar Flow Rates (RF 마그네트론 스퍼터링 시스템을 이용하여 증착한 AGZO 박막의 Ar 유량에 따른 구조적, 전기적, 광학적 특성)

  • Jang, Seok-Hyeon;Kim, Deok Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.32-36
    • /
    • 2022
  • AGZO thin films were deposited on glass substrates using RF magnetron sputtering system under Ar flow rates, and their structural, electrical, and optical properties were analyzed systematically. As a result of the XRD pattern, the peak of the (002) (2θ≈33.7˚) orientation was observed, and it was found to have a hexagonal wurtzite structure. The sheet resistance of Ar 5 sccm was 3.073×102 Ω/sq and showed the best electrical properties because of the improvement of mobility due to the increase of the grain size and the variation of RMS roughness. In addition, the average transmittance was more than 90% for all samples, which demonstrated good optical properties. It is expected that the TCO characteristics can be improved by controlling Ar flow rates, and this will increase the efficiency of photoelectronic devices such as OLED and solar cells.

Development of Smart Healthcare Contents using Virtual Reality Experiential Devices (가상현실 체험형 디바이스를 활용한 스마트 헬스케어 콘텐츠 개발)

  • Hong, Seong-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.739-744
    • /
    • 2022
  • Modern people, who are fully enjoying convenience with improved technology, are pursuing health next to convenience. Accordingly, the smart healthcare industry is rapidly increasing, and various companies are launching healthcare system products with applied VR. However, existing products on the market are expensive or professional products. Therefore, there are parts that are difficult for the general public to use. In this paper, we propose smart health care contents that can experience virtual reality anytime and anywhere at an affordable price and take care of health through exercise using Arduino and general bicycles sold in the market.

Comprehensive study of components affecting extrinsic transconductance in In0.7Ga0.3As quantum-well high-electron-mobility transistors for image sensor applications (이미지 센서 적용을 위한 In0.7Ga0.3As QW HEMT 소자의 extrinsic trans-conductance에 영향을 미치는 성분들의 포괄적 연구)

  • Yun, Seung-Won;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.441-445
    • /
    • 2021
  • The components affecting the extrinsic transconductance (gm_ext) in In0.7Ga0.3As quantum-well (QW) high-electron-mobility transistors (HEMTs) on an InP substrate were investigated. First, comprehensive modeling, which only requires physical parameters, was used to explain both the intrinsic transconductance (gm_int) and the gm_ext of the devices. Two types of In0.7Ga0.3As QW HEMT were fabricated with gate lengths ranging from 10 ㎛ to sub-100 nm. These measured results were correlated with the modeling to describe the device behavior using analytical expressions. To study the effects of the components affecting gm_int, the proposed approach was extended to projection by changing the values of physical parameters, such as series resistances (RS and RD), apparent mobility (𝜇n_app), and saturation velocity (𝜈sat).

Improved Dynamic Programming in Local Linear Approximation Based on a Template in a Lightweight ECG Signal-Processing Edge Device

  • Lee, Seungmin;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.97-114
    • /
    • 2022
  • Interest is increasing in electrocardiogram (ECG) signal analysis for embedded devices, creating the need to develop an algorithm suitable for a low-power, low-memory embedded device. Linear approximation of the ECG signal facilitates the detection of fiducial points by expressing the signal as a small number of vertices. However, dynamic programming, a global optimization method used for linear approximation, has the disadvantage of high complexity using memoization. In this paper, the calculation area and memory usage are improved using a linear approximated template. The proposed algorithm reduces the calculation area required for dynamic programming through local optimization around the vertices of the template. In addition, it minimizes the storage space required by expressing the time information using the error from the vertices of the template, which is more compact than the time difference between vertices. When the length of the signal is L, the number of vertices is N, and the margin tolerance is M, the spatial complexity improves from O(NL) to O(NM). In our experiment, the linear approximation processing time was 12.45 times faster, from 18.18 ms to 1.46 ms on average, for each beat. The quality distribution of the percentage root mean square difference confirms that the proposed algorithm is a stable approximation.