• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.039 seconds

Research for MWCNTs/$V_2O_5$ Nanowire Hetero-Junction Actuator Devices (탄소나노튜브/$V_2O_5$ 나노선 헤테로 구동소자 특성연구)

  • Lee, Kang-Ho;Yee, Seong-Min;Park, So-Jeong;Huh, Jung-Hwan;Kim, Gyu-Tae;Park, Sung-Joon;Ha, Jeong-Sook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.83-84
    • /
    • 2005
  • 생명체의 근육을 구성하는 근섬유와 마찬가지로 나노선 구동기는 불규칙적으로 엉켜있는 나노선들의 집합으로 이루어져 있으며, 기존의 강유전체에 기반을 둔 구동기에 비해 낮은 구동전압과 높은 일률을 가진다. 대표적인 나노선인 MWCNTs(Multi-walled Carbon Nanotubs)와 $V_2O_5$ 나노선을 이용한 구동기는 이미 각각 시현된 바 있으나, 이 둘의 이종접합을 통한 구동기는 아직까지 보고되지 않았다. 본 연구에서는 탄소나노튜브와 $V_2O_5$의 이종접합을 통해 필름 형태의 구동기를 구현하여 각각의 나노선 만을 이용했을 때보다 월등한 성능을 보여주는 구동기를 구현하였다. 향후 실용화 가능성을 염두에 두어, 보다 강건하고 최적화된 나노선 sheet의 합성과 구동기의 구조적 향상이 이루어진다면 그동안 알려진 그 어떤 물질보다도 우수한 구동특성을 보여줄 것이라 예상된다.

  • PDF

The Effect of Adhesion layer on Gate Insulator for OTFTs (OTFT의 게이트 절연막에 사용된 점착층에 대한 영향)

  • Lee, Dong-Hyun;Hyung, Gun-Woo;Pyo, Sang-Woo;Kim, Jung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.70-71
    • /
    • 2005
  • The electrical performances of organic thin-film transistors (OTFTs) have been improved for the last decade. In this paper, it was demonstrated that the electrical characteristics of the organic thin film transistors (OTFTs) were improved by using polymeric material as adhesion layer on gate insulator. We have investigated OTFTs with polyimide adhesion layer which was fabricated by vapor deposition polymerization (VDP) processing and formed by co-deposition of 6FDA and ODA. It was found that the OTFTs with adhesion layer showed better electrical characteristics than with bare layer because of good matching between semiconductor and gate insulator. Our devices of performance are field effect mobility of $0.4cm^2$/Vs, threshold voltage of -0.8 V and on-of current ratio of $10^6$. In addition, to improve the electrical characteristics of OTFT, we have reduced the thickness of adhesion layer up to a few nanometrs.

  • PDF

A Study on the High-Efficiency Red OLEDs using Phosphorescent Materials (인광재료를 이용한 고효율 적색 유기발광 다이오드에 관한 연구)

  • Shim, Ju-Yong;Jeon, Hyeon-Seong;Cho, Jae-Young;Jung, Jin-Ha;Yoon, Seok-Beom;Kang, Myung-Goo;Oh, Hwan-Sool
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.428-429
    • /
    • 2006
  • In this thesis, verifies electrical-optical characteristics of phosphorescent materials. basic structure of fabricating devices is glass/ITO/$\alpha$-NPD($300{\AA}$)/CBP:Guest($300{\AA}$)/BCP($80{\AA}$)/$Alq_3(100{\AA})$/Al($1000{\AA}$). In efficiency, fabrication of organic light emitting diodes using $Ir(btp)_2acac$ phosphorescent material is external quantum efficiency 0.268% as doping concentration 3%. At CIE coordinates, phosphorescent material $Ir(btp)_2acac$ following materials moves high purity red color(x=0.6686, y=0.3243). The brightness shows $285cd/cm^2$.

  • PDF

Anodic bonding characteristics of MCA to Si-wafer using pyrex #7740 glass intermediatelayer for MEMS applications (파일렉스 #7740 글라스 매개층을 이용한 MEMS용 MCA와 Si기판의 양극접합 특성)

  • Ahn, Jung-Hac;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.374-375
    • /
    • 2006
  • This paper describes anodic bonding characteristics of MCA to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with the same properties were deposited on MCA under optimum RF sputter conditions (Ar 100 %, input power $1\;W/cm^2$). After annealing at $450^{\circ}C$ for 1 hr, the anodic bonding of MCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in $110^{-6}$ Torr vacuum condition. Then, the MCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation and simulation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity being 0.05-0.08 %FS. Moreover, any damages or separation of MCNSi bonded interfaces did not occur during actuation test. Therefore, it is expected that anodic bonding technology of MCNSi-wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

Impedance spectroscopy analysis of organic light emitting diodes with the $O_2$ anode plasma treatment (저압 산소 플라즈마 처리된 ITO박막을 이용한 유기 EL 소자의 성능 향상에 관한 임피던스 분석)

  • Kim, Hyun-Min;Park, Hyung-June;Lee, Jun-Sin;Oh, Se-Myoung;Jung, Dong-Ggeun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.436-437
    • /
    • 2006
  • In this work, impedance Spectroscopic analysis was applied to study the effect of plasma treatment on the surface of indum-tin oxide (ITO) anodes using $O_2$ gas and to model the equivalent circuit for organic light emitting diodes (OLEDs) with the $O_2$ plasma treatment of ITO surface at the anodes. This device with ITO/TPD/Alq3/LiF/Al structure can be modeled as a simple combination of a resistor and a capacitor. The $O_2$ plasma treatment on the surface of ITO shifts the vacuum level of the ITO as a result of which the barrier height for hole injection at the ITO/organic interface is reduced. The impedance spectroscopy measurement of the devices with the $O_2$ plasma treatment on the surface of ITO anodes shows change of values in parallel resistance ($R_p$) and parallel capacitance ($C_p$).

  • PDF

Study on Design and Fabrication of Power SIT (전력 SIT 소자의 설계 및 제작에 관한 연구)

  • Kang, Ey-Goo;Park, Sang-Won;Jung, Min-Cheol;Yoo, Woo-Jang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.196-197
    • /
    • 2006
  • In this paper, two types of vertical SIT(Static Induction Transistor) structures are proposed to improve their electrical characteristics including the blocking voltage. Besides, the two dimensional numerical simulations were carried out using ISE-TCAD to verify the validity of the device and examine the electrical characteristics. First, a trench gate region oxide power SIT device is proposed to improve forward blocking characteristics. Second, a trench gate-source region power SIT device is proposed to obtain more higher forward blocking voltage and forward blocking characteristics at the same size. The two proposed devices have superior electrical characteristics when compared to conventional device. In the proposed trench gate oxide power SIT, the forward blocking voltage is considerably improved by using the vertical trench oxide and the forward blocking voltage is 1.5 times better than that of the conventional vertical power SIT. In the proposed trench gate-source oxide power SIT, it has considerable improvement in forward blocking characteristics which shows 1500V forward blocking voltage at -10V of the gate voltage. Consequently, the proposed trench oxide power SIT has the superior stability and electrical characteristics than the conventional power SIT.

  • PDF

The dependent of growth temperature of piezoelectric SBN Thin Film by Metal Organic Decomposition Process and their properties (MOD 법에 의한 압전 SBN 박막의 성장 온도 의존성 및 특성)

  • Kim, Kwang-Sik;Jang, Gun-Ik;Ur, Soon-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.382-383
    • /
    • 2006
  • The tungsten bronze type of strontium barium niobate(SBN) thin film was synthesized by metal organic decomposion method for SBN stock solution and the SBN thin film process were deposited by spin-coating process on Pt-deposited si-wafer(100) by magnetron sputtering system. The thickness of SBN thin film was 150~200 nm and were optimized for rpm of spin-coater system. The structural variation of SBN thin film was studied by TG-DTA and XRD. The deposited SBN stock solution on annealing at $400{\sim}800^{\circ}C$ a pure tungsten bronze SBN phase and the corresponding. average grain size about 500~1000 nm influenced by annealing temperature. The piezoelectric properties of prepared SBN thin film, the remanent polarization value(2Pr) and coercive field was $1.2{\mu}C/cm^2$ and 2.15V/cm, respectively.

  • PDF

The Converter of High Efficiency 48V 400A for Electronic Exchange (전자교환기용 고효율 48V 400A급 전력변환장치)

  • Park, S.W.;Joun, J.H.;Bae, Y.S.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.125-127
    • /
    • 1998
  • The widely used power supply (Switched Mode Power Supply : SMPS) as a source in order to stabilize direct current for electronics or communication systems has merits, when it is compared to the existing source for stability, such as high efficiency, small size, light weight by means of switching process of the semiconductor device which controls the flow of power. However, due to existence of inductors and capacitors used for charging energy, the source part in electronic or communication systems hasn't reached the speed, that is supposed to get, for achieving smaller size and lighter weight. In order to got smallness in size, it is necessary to increase switching frequency. And that makes devices for measuring energy smaller. Nevertheless, the rise switching frequency brings increases in switching loss, inductor loss, and power loss. Also, the occurrence of surge and noise caused by high frequency switching is setting higher. The resonant converter has been considered as one of methods that give solutions for the problems of SMPS and that method has been paid attention as a source technology in electronics and communication.

  • PDF

Improvement of Plasma Reactor Performance for Hydrogen Generation

  • Pavel, Kostyuk;Park, J.Y.;Kim, J.S.;Park, S.H.;Kim, Y.C.;Jeong, M.G.;Lee, H.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.519-520
    • /
    • 2006
  • Research was performed to increase the efficiency of a plasma reactor for $H_2$ yield. In the preceding studies $H_2$ was increased by adding Ni as a transitional metal catalyst and $TiO_2$ as a photocatalyst. In these experiments, it was found that distilled water, discharge frequency, and electrode configuration had a significant impact on $H_2$ generation. A substantial amount of hydrogen yield was observed at 2 kHz of discharge frequency and 12 kV of applied voltage. Within this favorable discharge conditions, the weight rate of $TiO_2$ and Ni powders was investigated. Plasma phenomenon was measured by electrical, optical and acoustical devices. It was found that emitted light, electric current and acoustical signals acquired from the discharge demonstrated systematical correlation. Changing the electrode's configuration allowed discharge distribution along the perimeter of the electrode's tip, which increased the density of streamers and plasma energy loadings, as the value of inception voltage for the discharge propagation decreased.

  • PDF

Evaluation of the Performance of an Organic Thin Film Solar Cell Prepared Using the Active Layer of Poly[[9-(1-octylnonyl)-9H-carbazole-2.7-diyl]-2.5-thiophenediyl-2.1.3-benzothiadiazole-4.7-Diyl-2.5-thiophenediyl]/[6,6]-Phenyl C71 Butyric Acid Methyl Ester Composite Thin Film

  • Ochiai, Shizuyasu;Uchiyama, Masaki;Kannappan, Santhakumar;Jayaraman, Ramajothi;Shin, Paik-Kyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.43-46
    • /
    • 2012
  • Organic solar cell devices were fabricated using poly[9-(1-octylnonyl)-9H-carbazole-2.7-diyl]-2.5-thiophenediyl-2.1.3-benzothiadiazole-4.7-diyl-2.5-thiophenediyl] PCDTBT/ [6,6]-phenyl $C_{71}$ butyric acid methyl ester (PC71BM) active layer deposited by spin coating. Moreover, the relationship between solar cell performance and buffer layer thickness was investigated by spin coating speed and AFM imaging of the buffer layer surface. The performance of the organic solar cell with spin-coated active layer was then evaluated, and the power conversion efficiency of the solar cell was determined to be > 5%.