• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.037 seconds

A Desigin of real sound service based-on object in Smart mobile devices (스마트 모바일 기기에서의 객체 기반 실감 음원 서비스 구현)

  • Jung, Jong-Jin;Lim, Tae-Beom;Lee, Seok-Pil
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.685-688
    • /
    • 2011
  • 앞으로의 멀티미디어 기기시장은 기존의 단순 복합 디지털 기기들이 아닌 사용자 감성 및 취향 제어가 가능한 인간 친화적 지능형 멀티미디어 기기가 주류를 이룰 것이다. 이미 IT 기능이 기존의 '정보의 소통'에서 '감성의 소통'으로 진화 중에 있으며, 미래시대에는 느낌까지 디지털 신호로 전달 가능한 기술이 발달 될 것이다. 이에 맞추어 사람의 감성, 주변 분위기, 섬세한 공간 정보를 전달하는 사실적인 오디오 개발 및 인프라가 구축되어 모든 멀티미디어 제품에 적용된다면, 사용자는 보다 현장감 있게 멀티미디어를 즐길 수 있을 것이다. 최근 스마트폰의 확산과 더불어 각종 다양한 음악서비스를 제고하는 웹/앱 형태의 어플리케이션이 증대되고 있는 바, 본 논문에서는 안드로이드 기반 스마트 모바일 기기에서 다양한 오디오 정보를 청취자에게 제공하고 이를 활용하여 청취자가 다양하게 오디오 재생 / 제어하여, 일방적으로 청취자가 오디오를 듣는 수준이 아니라 청취자 취향에 따라 다양하게 오디오를 감상 할 수 있는 서비스를 구현하였다.

Review on Functionalization of Laser-Induced Graphene

  • Jin Woo An;Hee Jae Kim;Seoung-Ki Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.203-213
    • /
    • 2023
  • Owing to carbon materials' diverse functionalization and versatility, the design and synthesis of carbon-based three-dimensional porous structures have become important foundational research topics across various fields. Among the various methods for producing porous carbon structures, laser-induced graphene (LIG) has garnered attention because of its large surface area, controllable structure, excellent electrical conductivity, scalability, and eco-friendly synthesis process. In addition, recent research results have reported more novel functionalities by advancing further from the unique characteristics of LIG through functionalization or compounding of LIG, making it an attractive material for various applications in electronic devices, sensing, catalysis, and energy storage. This review aims to update the research trends in LIG and its functionalization, providing insights to inspire more interesting studies on functional LIG to expand its potential applications ultimately. Starting with the synthesis method and material characteristics of LIG, we introduce the functionalization of LIG, which is classified into surface modification, heteroatom doping, and hybridization based on the interaction mechanism. Finally, we summarize and discuss the prospects of LIG and its functionalization.

Data Preprocessing Method for Lightweight Automotive Intrusion Detection System (차량용 경량화 침입 탐지 시스템을 위한 데이터 전처리 기법)

  • Sangmin Park;Hyungchul Im;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.531-536
    • /
    • 2023
  • This paper proposes a sliding window method with frame feature insertion for immediate attack detection on in-vehicle networks. This method guarantees real-time attack detection by labeling based on the attack status of the current frame. Experiments show that the proposed method improves detection performance by giving more weight to the current frame in CNN computation. The proposed model was designed based on a lightweight LeNet-5 architecture and it achieves 100% detection for DoS attacks. Additionally, by comparing the complexity with conventional models, the proposed model has been proven to be more suitable for resource-constrained devices like ECUs.

A Study on JFET and FLR Optimization for the Design and Fabrication of 3.3kV SiC MOSFET (3.3kV SiC MOSFET 설계 및 제작을 위한 JFET 및 FLR 최적화 연구)

  • YeHwan Kang;Hyunwoo Lee;Sang-Mo Koo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 2023
  • The potential performance benefits of Silicon Carbide(SiC) MOSFETs in high power, high frequency power switching applications have been well established over the past 20 years. In the past few years, SiC MOSFET offerings have been announced by suppliers as die, discrete, module and system level products. In high-voltage SiC vertical devices, major design concerns is the edge termination and cell pitch design Field Limiting Rings(FLR) based structures are commonly used in the edge termination approaches. This study presents a comprehensive analysis of the impact of variation of FLR and JFET region on the performance of a 3.3 kV SiC MOSFET during. The improvement in MOSFET reverse bias by optimizing the field ring design and its influence on the nominal operating performance is evaluated. And, manufacturability of the optimization of the JFET region of the SiC MOSFET was also examined by investigating full-map electrical characteristics.

  • PDF

A Comparison Study of Input ESD Protection schemes Utilizing Thyristor and Diode Devices (싸이리스터와 다이오드 소자를 이용하는 입력 ESD 보호방식의 비교 연구)

  • Choi, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.75-87
    • /
    • 2010
  • For two input-protection schemes suitable for RF ICs utilizing the thyristor and diode protection devices, which can be fabricated in standard CMOS processes, we attempt an in-depth comparison on HBM ESD robustness in terms of lattice heating inside protection devices and peak voltages developed across gate oxides in input buffers, based on DC, mixed-mode transient, and AC analyses utilizing a 2-dimensional device simulator. For this purpose, we construct an equivalent circuit for an input HBM test environment of a CMOS chip equipped with the input ESD protection circuits, which allows mixed-mode transient simulations for various HBM test modes. By executing mixed-mode simulations including up to six active protection devices in a circuit, we attempt a detailed analysis on the problems, which can occur in real tests. In the procedure, we suggest to a recipe to ease the bipolar trigger in the protection devices and figure out that oxide failure in internal circuits is determined by the junction breakdown voltage of the NMOS structure residing in the protection devices. We explain the characteristic differences of two protection schemes as an input ESD protection circuit for RF ICs, and suggest valuable guidelines relating design of the protection devices and circuits.

A Study on Malfunction Mode and Failure Rate Properties of Semiconductor by Impact of Pulse Repetition Rate (펄스 반복률에 의한 반도체 소자의 오동작 모드와 고장률에 관한 연구)

  • Park, Ki-Hoon;Bang, Jeong-Ju;Kim, Ruck-Woan;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.360-364
    • /
    • 2015
  • Electronic systems based on solid state devices have changed to be more complicated and miniaturized as the electronic systems developed. If the electronic systems are exposed to HPEM (high power electromagnetics), the systems will be destroyed by the coupling effects of electromagnetic waves. Because the HPEM has fast rise time and high voltage of the pulse, the semiconductors are vulnerable to external stress factor such as the coupled electromagnetic pulse. Therefore, we will discuss about malfunction behavior and DFR (destruction failure rate) of the semiconductor caused by amplitude and repetition rate of the pulse. For this experiment, the pulses were injected into the pins of general purpose IC due to the fact that pulse injection test enables the phenomenon after the HPEM is coupled to power cables. These pulses were produced by pulse generator and their characteristics are 2.1 [ns] of pulse width, 1.1 [ns] of pulse rise time and 30, 60, 120 [Hz] of pulse repetition rate. The injected pulses have changed frequency, period and duty ratio of output generated by Timer IC. Also, as the pulse repetition rate increases the breakdown threshold point of the timer IC was reduced.

Glass strengthening and coloring using PIIID technology

  • Han, Seung-Hee;An, Se-Hoon;Lee, Geun-Hyuk;Jang, Seong-Woo;Whang, Se-Hoon;Yoon, Jung-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.178-178
    • /
    • 2016
  • Every display is equipped with a cover glass to protect the underneath displaying devices from mechanical and environmental impact during its use. The strengthened glass such as Gorilla glass.$^{TM}$ has been exclusively adopted as a cover glass in many displays. Conventionally, the strengthened glass has been manufactured via ion-exchange process in wet salt bath at high temperature of around $500^{\circ}C$ for hours of treatment time. During ion-exchange process, Na ions with smaller diameter are substituted with larger-diameter K ions, resulting in high compressive stress in near-surface region and making the treated glass very resistant to scratch or impact during its use. In this study, PIIID (plasma immersion ion implantation and deposition) technique was used to implant metal ions into the glass surface for strengthening. In addition, due to the plasmonic effect of the implanted metal ions, the metal-ion implanted glass samples got colored. To implant metal ions, plasma immersion ion implantation technique combined with HiPIMS method was adopted. The HiPIMS pulse voltage of up to 1.4 kV was applied to the 3" magnetron sputtering targets (Cu, Ag, Au, Al). At the same time, the sample stage with glass samples was synchronously pulse-biased via -50 kV high voltage pulse modulator. The frequency and pulse width of 100 Hz and 15 usec, respectively, were used during metal ion implantation. In addition, nitrogen ions were implanted to study the strengthening effect of gas ion implantation. The mechanical and optical properties of implanted glass samples were investigated using micro-hardness tester and UV-Vis spectrometer. The implanted ion distribution and the chemical states along depth was studied with XPS (X-ray photo-electron spectroscopy). A cross-sectional TEM study was also conducted to investigate the nature of implanted metal ions. The ion-implanted glass samples showed increased hardness of ~1.5 times at short implantation times. However, with increasing the implantation time, the surface hardness was decreased due to the accumulation of implantation damage.

  • PDF

A Study on Optimization of the P-region of 4H-SiC MPS Diode (4H-SiC MPS 다이오드의 P 영역 최적화에 관한 연구)

  • Jung, Se-Woong;Kim, Ki-Hwan;Kim, So-Mang;Park, Sung-Joon;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.181-183
    • /
    • 2016
  • In this work, the merged PiN Schottky(MPS) diodes based silicon carbide(SiC) have been optimized and designed for 1200V diodes by 2D-atlas simulation tool. We investigated the optimized characteristics of SiC MPS diodes such as breakdown voltage and specific on-resistance by varying the doping concentrations of P-Grid/epi-layer and space of P-Grid, which are the most important parameters. The breakdown voltage and specific on-resistance, based on Baliga's Figure Of Merit (BFOM), have been compared with and the SiC-based MPS diodes show improved BFOMs with low values of specific on-resistance and high breakdown voltage. It has been demonstrated 1,200 V SiC MPS diodes will find useful applications in high voltage energy-efficient devices.

The Substitution of Inkjet-printed Gold Nanoparticles for Electroplated Gold Films in Electronic Package

  • Jang, Seon-Hui;Gang, Seong-Gu;Kim, Dong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.25.1-25.1
    • /
    • 2011
  • Over the past few decades, metallic nanoparticles (NPs) have been of great interest due to their unique mesoscopic properties which distinguish them from those of bulk metals; such as lowered melting points, greater versatility that allows for more ease of processability, and tunable optical and mechanical properties. Due to these unique properties, potential opportunities are seen for applications that incorporate nanomaterials into optical and electronic devices. Specifically, the development of metallic NPs has gained significant interest within the electronics field and technological community as a whole. In this study, gold (Au) pads for surface finish in electronic package were developed by inkjet printing of Au NPs. The microstructures of inkjet-printed Au film were investigated by various thermal treatment conditions. The film showed the grain growth as well as bonding between NPs. The film became denser with pore elimination when NPs were sintered under gas flows of $N_2$-bubbled through formic acid ($FA/N_2$) and $N_2$, which resulted in improvement of electrical conductance. The resistivity of film was 4.79 ${\mu}{\Omega}$-cm, about twice of bulk value. From organic anlayses of FTIR, Raman spectroscopy, and TGA, the amount of organic residue in the film was 0.43% which meant considerable removal of the solvent or organic capping molecules. The solder ball shear test was adopted for solderability and shear strength value was 820 gf (1 gf=9.81 mN) on average. This shear strength is good enough to substitute the inkjet-printed Au nanoparticulate film for electroplating in electronic package.

  • PDF

Electrical Properties of Flexible Field Effect Transistor Devices Composed of Si Nanowire by Electroless Etching Method (무전해 식각법으로 합성한 Si 나노와이어 Field Effect Transistor 유연소자의 특성)

  • Lee, Sang-Hoon;Moon, Kyeong-Ju;Hwang, Sung-Hwan;Lee, Tae-Il;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.115-119
    • /
    • 2011
  • Si Nanowire (NW) field effect transistors (FETs) were fabricated on hard Si and flexible polyimide (PI) substrates, and their electrical characteristics were compared. Si NWs used as channels were synthesized by electroless etching method at low temperature, and these NWs were refined using a centrifugation method to get the NWs to have an optimal diameter and length for FETs. The gate insulator was poly(4-vinylphenol) (PVP), prepared using a spin-coating method on the PI substrate. Gold was used as electrodes whose gap was 8 ${\mu}m$. These gold electrodes were deposited using a thermal evaporator. Current-voltage (I-V) characteristics of the device were measured using a semiconductor analyzer, HP-4145B. The electrical properties of the device were characterized through hole mobility, $I_{on}/I_{off}$ ratio and threshold voltage. The results showed that the electrical properties of the TFTs on PVP were similar to those of TFTs on $SiO_2$. The bending durability of SiNWs TFTs on PI substrate was also studied with increasing bending times. The results showed that the electrical properties were maintained until the sample was folded about 500 times. But, after more than 1000 bending tests, drain current showed a rapid decrease due to the defects caused by the roughness of the surface of the Si NWs and mismatches of the Si NWs with electrodes.