• 제목/요약/키워드: Electronic cooling

검색결과 461건 처리시간 0.023초

전자교환시스템 냉각을 위한 히트파이프 적용 연구 (A study on the application of heat pipe to the cooling of ATM switching system)

  • 김원태;이윤표;윤성영
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.497-503
    • /
    • 1997
  • In the present study, the cooling package using the heat pipe has been developed to improve the thermal performance in the point of cooling characteristics of the electronic chip placed to the subrack being readily assembled and disassembled in ATM switching system. As the preliminary experiments, the cooling performances between a conventional way using a cooling fin and a proposed method applying the heat pipe are compared and analyzed. The cooling performance at a simulated electronic component packaging a heat pipe module is approximately achieved up to $5.0W/cm^2$ heat flux and the allowable temperature at the heated chip is sustained in the range within $70^{\circ}C$. From the results, it is confirmed that temperature oscillations are also settled by inserted wick in the evaporator section. From the user's viewpoint, the method to assemble and disassemble the heat pipe easily has been devised.

  • PDF

Project Summary of Three Gorges' 840MVA Hydro-generator with Close-Loop-Self-Circulating Evaporative Cooling System

  • Yuan, Jiayi;Meng, Dawei;Gu, Guobiao;Song, Fuchuan;Zhang, Tianpeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권1호
    • /
    • pp.48-53
    • /
    • 2014
  • In December 2011 and July 2012, two sets of 840MVA hydro-generator of Three Gorges on Yangtze River with Close-loop-self-circulating evaporative cooling (CLSCEC) system were put into commercial operation. In this paper, we make engineering summary of these two generators with CLSCEC system. We also make a comparison between the internal water cooling (IWC) hydro-generator and the CLSCEC hydro-generator used in Three Gorges power plant in fields of their operating characteristics, working performances, technical features, working safety and reliability. In addition, engineering structures, type tests' results and systematic emulating calculation of CLSCEC schemes are analyzed.

전자식 팽창밸브를 적용한 3RT급 히트펌프 시스템의 냉방 성능 특성 (Cooling Performance Characteristics of 3RT Heat Pump System applied Electronic Expansion Valve)

  • 손창효;윤정인;최광환;하수정;전민주;박성현;이상봉
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.79-85
    • /
    • 2017
  • A heat pump system is a highly efficient, eco-friendly device which consumes a small amount of energy and supply a lot of energy for heat formation. In addition, it is a single device system that has low generation effect about carbon dioxide. There are many researches related to the electronic expansion valve and the heat pump, but the detailed data analysis of each influence is insufficient. In this study, the cooling capacity and COP of the heat pump system were investigated by varying frequency of the inverter connected to compressor, inlet temperature of chilled water into evaporator and inlet temperature of cooling water into condenser. The results are as follows : (1) The cooling capacity increased as the inverter frequency, inlet temperature of chilled water into evaporator increased, and inlet temperature of cooling water into condenser decreased. (2) The COP increased as the frequency of inverter, inlet temperature of cooling water into condenser decreased and the inlet temperature of chilled water into evaporator increased.

Conceptual design of cooling anchor for current lead on HTS field coils

  • Hyeon, C.J.;Kim, J.H.;Quach, H.L.;Chae, S.H.;Yoon, Y.S.;Lee, J.;Han, S.H.;Jeon, H.;Choi, Y.H.;Lee, H.G.;Kim, H.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권2호
    • /
    • pp.38-43
    • /
    • 2017
  • The role of current lead in high-temperature superconducting synchronous machine (HTSSM) is to function as a power supply by connecting the power supply unit at room temperature with the HTS field coils at cryogenic temperature. Such physical and electrical connection causes conduction and Joule-heating losses, which are major thermal losses of HTSSM rotors. To ensure definite stability and economic feasibility of HTS field coils, quickly and smoothly cooling down the current lead is a key design technology. Therefore, in this paper, we introduce a novel concept of a cooling anchor to enhance the cooling performance of a metal current lead. The technical concept of this technology is the simultaneously chilling and supporting the current lead. First, the structure of the current lead and cooling anchor were conceptually designed for field coils for a 1.5 MW-class HTSSM. Then, the effect of this installation on the thermal characteristics of HTS coils was investigated by 3D finite element analysis.

반도체 및 전자패키지의 방열기술 동향 (Heat Dissipation Trends in Semiconductors and Electronic Packaging)

  • 문석환;최광성;엄용성;윤호경;주지호;최광문;신정호
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

Development of a Flat-Plate Cooling Device for Electronic Packaging

  • Moon, Seok-Hwan;Hwang, Gunn;Lim, Hyun-Taeck
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.645-647
    • /
    • 2011
  • In this study, a microcapillary pumped loop (MCPL) that can be used as a cooling device for small electronic and telecommunications equipment has been developed. For thin devices such as an MCPL, securing a vapor flow space is a critical issue for enhancing the thermal performance. In this letter, such enhancement in thermal performance was accomplished by eliminating condensed droplets from the vapor line. By fabricating the grooves in the vapor line to eliminate droplets, a decrease in thermal resistance of about 63.7% was achieved.

핀-휜 구조물을 이용한 채널의 냉각특성 해석 (Analysis on the Cooling Characteristics of a Channel with Pin-Fin Structure)

  • 신지영;손영석;이대영
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.667-673
    • /
    • 2003
  • Recent trends in the electronic equipment indicate that the power consumption and heat generation in a chip increase as the components are miniaturized and the computing speed becomes faster. Suitable heat dissipation is required to ensure the guaranteed performance and reliable operation of the electronic devices. The aim of the present study is to investigate the forced-convective thermal-hydraulic characteristics of a pin-fin heat exchanger as a candidate for cooling system of the electronic devices. The influence of the structure of the pin-fin assembly on heat transfer is investigated by porous medium model. The results are compared with the experimental data or correlations of several researchers for the heat transfer coefficients for the channel flow with pin-fin arrays. Finally, the effects of design parameters such as the pin-fin diameter and the spacing are examined.

축류 팬을 이용한 충돌제트 전자냉각 설계개념에 대한 연구 (Study on the Design Concept of Impinging Jet Electronics Cooling by Using Axial Fan)

  • 이찬;길현권
    • 한국유체기계학회 논문집
    • /
    • 제12권2호
    • /
    • pp.24-30
    • /
    • 2009
  • Flow and noise analyses are conducted for examining a new design concept of impinging jet electronics cooling, and the analysis results are compared with conventional electronics cooling techniques. For the application of impinging jet electronics cooling method, the present study considers the air duct where air is supplied by axial fan and air flow from the duct is impinged vertically onto the electronic component heat source. Applying CFD simulation technique and fan noise model to the present cooling scheme, the cooling performance of the impinging jet as well as the operation condition and the noise characteristics of fan are investigated for various impinging jet nozzle conditions and fan models. Furthermore, the impinging jet electronics cooling analysis results are compared with the conventional parallel-flow cooling scheme to give the design concept and criteria of impinging jet cooling method.

CFD를 이용한 연료전지 차량 레이아웃 최적화 (Engine Room Layout Design Optimization of Fuel Cell Vehicle Using CFD Technique)

  • 김정일;전완호;조장형
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.99-106
    • /
    • 2011
  • This paper deals with engine room layout design optimization of fuel cell electric vehicle (FCEV), which has been proposed as a potential alternative to fossil fuel depletion. Investing the great R&D efforts, the global vehicle manufacturers, especially Honda motor corporate, have shown not prototype vehicle but commercial vehicle using fuel cell in the market recently. In this paper, we analyze cooling performance and flow characteristic in the engine room of newly FCEV, in addition we suggest the optimization process for engine room layout design optimization. The two radiators in the vehicle for fuel cell stack and electronic components cooling have been analyzed and their performance are obtained in terms of cooling performance ratio (CPR). The value of CPR should always be less than one and based on criteria, we have achieved the optimum cooling performance of radiators for stack and electronic components. Aerodynamic performance is evaluated in terms of drag coefficient, improved through underbody modification using air devices.

히트파이프 열교환기를 이용한 전자통신장비 콘솔의 냉각 기술에 관한 연구 (A Study on cooling technology of electronics communication device consoles using heat pipe exchangers)

  • 최지훈;유성열;성병호;이정환;김종만;전지환;서명원;김철주
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.483-486
    • /
    • 2006
  • The fan is widely used to cool high heat flux generated as of the electronic communication device consoles. It, however, makes a lot of noises that interfere considerably with the operation environment. This study was conducted to obtain the cooling design technology of the consoles through being equipped with the Heat Pipe Heat Exchangers (HPHE) together with low revolution fans in place of existing fans for the cooling technology of the forced convection. Not only the sealed type consoles but the HPHE were also designed so as to cool effectively the heat generated from the inside of the console. The simulation was conducted by computational numerical analysis along with its experiments. The results of the numerical analysis and experiments were compared in order to improve the cooling technology of the consoles mounted with the HPHE. Consequently, instead of loud fan noise generated as of existing forced convection methods, the cooling technology of HPHE can remarkably improve many problems such as the operation environment, indoor dust, malfunction caused by pollution sources and so on.

  • PDF