• Title/Summary/Keyword: Electronic conductivity

Search Result 1,035, Processing Time 0.027 seconds

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

Effects of Liquid Pig Manure Application Level on Growth Characteristics, Yield, and Feed Value of Whole Crop Barley at Reclaimed Tidal Land in Southwestern Korea

  • Shin, Pyeong;Cho, Kwang-Min;Back, Nam-Hyun;Yang, Chang-Hyu;Lee, Geon-Hwi;Park, Ki-Hun;Lee, Dong-Sung;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.579-585
    • /
    • 2014
  • This study was conducted to investigate liquid pig manure (LPM) application rates on the growth characteristics, yield, and feed value of whole crop barley in Yeongsangang and Saemangeum reclaimed tidal land. Electronic conductivity (EC), organic matter (OM), and available phosphate (Av. $P_2O_5$) increased in chemical properties of Yeongsangang and Saemangeum soil as raising LPM application level. As increasing LPM application level, exchangeable $Na^+$ significantly increased in Yeongsangang, while exchangeable $K^+$ significantly increased in Saemangeum. Plant height was not significantly different from LPM 100% to LPM 200% in Yeongsangang and in Saemangeum. Dry matter yield of whole crop barley increased steadily, but crop yield of LPM 200% in Yeongsangang ($10.5ton\;ha^{-1}$) was as much as that of LPM 150% ($10.0ton\;ha^{-1}$). Yield of LPM 200% ($11.2ton\;ha^{-1}$) in Saemangeum was similar to that of LPM 150% ($10.5ton\;ha^{-1}$). Crude protein (CP) increased depending on LPM application level, but total digestible nutrients (TDN) increased regardless of LPM application level. LPM 200% was the highest in TDN yield (Yeongsangang: $7.4ton\;ha^{-1}$, Saemangeum: $6.9ton\;ha^{-1}$), but there was no statistical difference between LPM 150% (Yeongsangang: $6.9ton\;ha^{-1}$, Saemangeum: $6.6ton\;ha^{-1}$) and LPM 200%. From the results described above, optimum rate of LPM for cultivating whole crop barley is considered 100% in Yeongsangang reclaimed tidal land and 150% in Saemangeum reclaimed tidal land, showing that the effect of LPM application is better in Segmentation than that in Yeongsangang for yield of whole crop barley.

Abundance and Biomass of Macroinvertebrate Association in a First Order Stream at Mt. Jumbong, Kangwon-do (점봉산의 한 일차하천에 서식하는 대형무척추동물의 풍부도와 현존량)

  • Chung, Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.1-10
    • /
    • 2005
  • Macroinvertebrates from a first order stream at Mt Jumbong, Kangwon-do, was examined for their abundance and biomass. Sampling was done by using a pipe sampler (${\phi}$ 20 cm) for 11occasions (n = 5) at 4${\sim}$6 weeks intervals during November 1997 through October 1998. Water temperature and electronic conductivity of the study stream ranged $0\;{\sim}\;14^{\circ}C$ and 15${\sim}$25 ${\mu}s$/cm, respectively. During the study, 53 insect taxa and 3 non-insect taxa were collected. Annual mean number of individuals (${\pm}$1 SD) was 77741${\pm}$69232${\cdot}$m$^{-2}$ ${\cdot}$yr$^{-1}$, being high in winter (${\pm}$1 SD) (December: 171178${\pm}$130468 $m^{-2}$) and low in summer (${\pm}$ 1 SD) (June: 29872${\pm}$13078 $m^{-2}$). Non-predatory subfamilies of Chironomidae and Nemoura sp. occupied 53.3% and 21.8% of annual abundance. Annual mean biomass was 10g${\cdot}$m$^{-2}$${\cdot}$yr$^{-1}$ in ash free dry weight (AFDW), being high in late winter (February: 16 gAFDW $m^{-2}$.) and low in summer (June: 3 gAFDW $m^{-2}$). Gammarus sp. represented 39.8% of the total biomass and was followed by non-predatory subfamilies of Chironomidae (15.2%) and Hydatohylax sp. (8.5%, Limnephilidae: Trichoptera). Since the non-predatory subfamilies of chironomidae were composed of many species, Nemoura sp. was the most abundant taxon. However, Cammarus sp. was surely the most important taxon to the functional aspects of this first order stream ecosystems.

MICROLEAKAGE OF COMPOSITE RESIN RESTORATION ACCORDING TO THE NUMBER OF THERMOCYCLING (열순환 횟수에 따른 복합레진의 미세누출)

  • Kim, Chang-Youn;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • Present tooth bonding system can be categorized into total etching bonding system (TE) and self-etching boding system (SE) based on their way of smear layer treatment. The purposes of this study were to compare the effectiveness between these two systems and to evaluate the effect of number of themocycling on microleakage of class V composite resin restorations. Total forty class V cavities were prepared on the single-rooted bovine teeth and were randomly divided into four experimental groups: two kinds of bonding system and another two kinds of thermocycling groups. Half of the cavities were filed with Z250 following the use of TE system, Single Bond and another twenty cavities were filled with Metafil and AQ Bond, SE system. All composite restoratives were cured using light curing unit (XL2500, 3M ESPE, St. Paul, MN, USA) for 40 seconds with a light intensity of $600mW/cm^2$. Teeth were stored in distilled water for one day at room temperature and were finished and polished with Sof-Lex system. Half of teeth were thermocycled 500 times and the other half were thermocycled 5,000 times between $5^{\circ}C$ and $55^{\circ}C$ for 30 second at each temperature. Teeth were isolated with two layers of nail varnish except the restoration surface and 1 mm surrounding margins. Electrical conductivity (${\mu}A$) was recorded in distilled water by electrochemical method. Microleakage scores were compared and analyzed using two-way ANOVA at 95% level. From this study, following results were obtained: There was no interaction between variables of bonding system and number of thermocycling (p = 0.485). Microleakage was not affected by the number of thermocycling either (p = 0.814). However, Composite restoration of Metafil and AQ Bond, SE bond system showed less microleakage than composite restoration of Z250 and Single Bond, TE bond system (p = 0.005).

Application of Environmental Friendly Bio-adsorbent based on a Plant Root for Copper Recovery Compared to the Synthetic Resin (구리 회수를 위한 식물뿌리 기반 친환경 바이오 흡착제의 적용 - 합성수지와의 비교)

  • Bawkar, Shilpa K.;Jha, Manis K.;Choubey, Pankaj K.;Parween, Rukshana;Panda, Rekha;Singh, Pramod K.;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.56-65
    • /
    • 2022
  • Copper is one of the non-ferrous metals used in the electrical/electronic manufacturing industries due to its superior properties particularly the high conductivity and less resistivity. The effluent generated from the surface finishing process of these industries contains higher copper content which gets discharged in to water bodies directly or indirectly. This causes severe environmental pollution and also results in loss of an important valuable metal. To overcome this issue, continuous R & D activities are going on across the globe in adsorption area with the purpose of finding an efficient, low cost and ecofriendly adsorbent. In view of the above, present investigation was made to compare the performance of a plant root (Datura root powder) as a bio-adsorbent to that of the synthetic one (Tulsion T-42) for copper adsorption from such effluent. Experiments were carried out in batch studies to optimize parameters such as adsorbent dose, contact time, pH, feed concentration, etc. Results of the batch experiments indicate that 0.2 g of Datura root powder and 0.1 g of Tulsion T-42 showed 95% copper adsorption from an initial feed/solution of 100 ppm Cu at pH 4 in contact time of 15 and 30 min, respectively. Adsorption data for both the adsorbents were fitted well to the Freundlich isotherm. Experimental results were also validated with the kinetic model, which showed that the adsorption of copper followed pseudo-second order rate expression for the both adsorbents. Overall result demonstrates that the bio-adsorbent tested has a potential applicability for metal recovery from the waste solutions/effluents of metal finishing units. In view of the requirements of commercial viability and minimal environmental damage there from, Datura root powder being an effective material for metal uptake, may prove to be a feasible adsorbent for copper recovery after the necessary scale-up studies.