• Title/Summary/Keyword: Electronic components for spacecraft

Search Result 3, Processing Time 0.016 seconds

Reliability Prediction of Hybrid DC-DC Converter for Spacecrafts (우주용 Hybrid DC-DC Converter 신뢰성 예측)

  • Kim, Ki-Tae;Kim, Dal-Suk;Park, Boo-Hee;Ahn, Jung-Jin;Kim, Jong-Man;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.10 no.3
    • /
    • pp.171-182
    • /
    • 2010
  • The reliability prediction analysis is a feedback tool that designer uses to provide insight into the component designs. This insight may indicate sensitive components within the design. This paper examines predicted failure rates for hybrid dc-dc converter for spacecraft using MIL-HDBK-217F prediction methodology. The results from part count/stress analysis represent priority components that affect the converter failures. The high priority components are analyzed to find out stress factor based on MIL-HDBK-217F. This information provides an opportunity for designer to improve the reliability of the product in development process.

A COMPARISON STUDY OF SPACE RADIATION DOSE ANALYSIS PROGRAMS: SPENVIS SECTORING TOOL AND SIGMA II

  • Chae Jongwon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.347-350
    • /
    • 2004
  • A space radiation analysis has been used to evaluate an ability of electronic equipment boxes or spacecrafts to endure various radiation effects, so it helps design thicknesses of structure and allocate components to meet the radiation requirements. A comparison study of space radiation dose analysis programs SPENVIS Sectoring Tool (SST) and SIGMA II is conducted through some structure cases, simple sphere shell, box and representative satellite configurations. The results and a discussion of comparison will be given. A general comparison will be shown for understanding those programs. The both programs use the same strategy, solid angle sectoring with ray-tracing method to produce an approximate dose at points in representative simple and complex models of spacecraft structures. Also the particle environment data corresponding to mission specification and radiation transport data are used as input data. But there are distinctions between them. The specification of geometry model and its input scheme, the assignment of dose point and the numbers, the prerequisite programs and ways of representing results will be discussed. SST is a web-based interactive program for sectoring analysis of complex geometries. It may be useful for a preliminary dose assessment with user-friendly interfaces and a package approach. SIGMA II is able to obtain from RSICC (Radiation Safety Information Computational Center) as a FOR-TRAN 77 source code. It may be suitable for either parametric preliminary design or detailed final design, e.g. a manned flight or radiation-sensitive component configuration design. It needs some debugs, recompiling and a tedious work to make geometrical quadric surfaces for actual spacecraft configuration, and has poor documentation. It is recommend to vist RSICC homepage and GEANT4/SSAT homepage.

  • PDF

Space Weather Effects on GEO Satellite Anomalies during 1997-2009

  • Choi, Ho-Sung;Lee, Jae-Jin;Cho, Kyung-Suk;Cho, Il-Hyun;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.30.2-30.2
    • /
    • 2010
  • Numerous operational anomalies and satellite failures have been reported since the beginnings of the "space age". Space weather effects on modern spacecraft systems have been emphasized more and more as increasing their complexity and capability. Energetic particles potentially can destroy and degrade electronic components in satellites. We analyzed the geostationary (GEO) satellite anomalies during 1997-2009 to search possible influences of space weather on the satellite anomalies like power problem, control processor problem, attitude control problem, etc. For this we use particle data from GOES and LANL satellites to investigate space weather effects on the GEO satellites' anomalies depending on Kp index, local time, seasonal variation, and high-energy electron contribution. As results, we obtained following results: (1) there is a good correlation between geomagnetic index(Kp) and anomaly occurrences of the GEO satellite; (2) especially during the solar minimum, occurrence of the satellite anomalies are related to electron flux increase due to high speed solar wind; (3) satellite anomalies occurred more preferentially in the midnight and dawn sector than noon and dusk sector; (4) and the anomalies occurred twice more in Spring and Fall than Summer and Winter; (5) the electron with the lowest energy channel (50-75keV) has the highest correlation (cc=0.758) with the anomalies. High association between the anomalies and the low energy electrons could be understand by the facts that electron fluxes in the spring and fall are stronger than those in the summer and winter, and low-energy electron flux is more concentrated in the dawn sector where the GEO satellite anomalies occurred more frequently than high-energy electron flux. While we could not identify what cause such local time dependences, our results shows that low-energy electrons (~100keV) could be main source of the satellite anomaly, which should be carefully taken into account of operating satellites.

  • PDF