• Title/Summary/Keyword: Electronic Support System Receiver

Search Result 13, Processing Time 0.018 seconds

A Search Band Implementation Considering the Receivers of the Electronic Warfare Support System (전자전 ES 시스템의 수신기를 고려한 탐색대역 생성)

  • Yoon, In-Bok;Jeong, Chang-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1091-1096
    • /
    • 2011
  • The main factors of radar signals used in electronic warfare are Radio Frequency(RF), Pulse Repetition Interval(PRI), Pulse Width(PW), Scan Parameter(SP) and so on. This radar signals may have some important information for the electronic warfare. So, there is a necessity for making a threat database to decide whether the radar signal is a threat or not. When the electronic support system collects some threat radar signals, it needs the search band to control the receivers and filter banks of the system. In this paper we propose search band implementation considering the type and center frequency of the receivers of the electronic support system.

Novel New Approach to Improve Noise Figure Using Combiner for Phase-Matched Receiver Module with Wideband Frequency of 6-18 GHz

  • Jeon, Yuseok;Bang, Sungil
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.241-247
    • /
    • 2016
  • This paper proposes the design and measurement of a 6-18 GHz front-end receiver module that has been combined into a one- channel output from a two-channel input for electronic warfare support measures (ESM) applications. This module includes a limiter, high-pass filter (HPF), power combiner, equalizer and amplifier. This paper focuses on the design aspects of reducing the noise figure (NF) and matching the phase and amplitude. The NF, linear equalizer, power divider, and HPF were considered in the design. A broadband receiver based on a combined configuration used to obtain low NF. We verify that our receiver module improves the noise figure by as much as 0.78 dB over measured data with a maximum of 5.54 dB over a 6-18 GHz bandwidth; the difference value of phase matching is within $7^{\circ}$ between ports.

Development of Wideband Multi-Channel Receiver for Direction Finding of Communication Signals (통신 신호 방향 탐지를 위한 광대역 다중 채널 수신기 개발)

  • Chang, Jaewon;Ahn, Junil;Joo, Jeungmin;Lee, Dongweon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.527-536
    • /
    • 2021
  • In wireless environments, wideband receivers are used in a communication intelligent system to detect unknown signals and obtain azimuth information. To design a wideband receiver that performs multiple signal detection and direction finding simultaneously, it is necessary to consider a reception structure composed of multiple channels. In this paper, we propose a wideband multi-channel receiver for direction finding of unknown wideband communication signals including frequency hopping signals. A signal processing method for detecting received signals and estimating azimuth information is presented, and components of the manufactured wideband receiver are described. In addition, test results of the signal detection performance by mounting the proposed wideband multi-channel receiver on the flight system are included.

RGB-LED-based Optical Camera Communication using Multilevel Variable Pulse Position Modulation for Healthcare Applications

  • Rachim, Vega Pradana;An, Jinyoung;Pham, Quan Ngoc;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • In this paper, a 32-variable pulse position modulation (32-VPPM) scheme is proposed to support a red-green-blue light-emitting-diode (RGB-LED)-based optical camera communication (OCC) system. Our proposed modulation scheme is designed to enhance the OCC data transmission rate, which is targeted for the wearable biomedical data monitoring system. The OCC technology has been utilized as an alternative solution to the radio frequency (RF) wireless system for long-term self-healthcare monitoring. Different biomedical signals, such as electrocardiograms, photoplethysmograms, and respiration signals are being monitored and transmitted wirelessly from the wearable biomedical device to the smartphone receiver. A common 30 frames per second (fps) smartphone camera with a CMOS image sensor is used to record a transmitted optical signal. Moreover, the overall proposed system architecture, modulation scheme, and data demodulation are discussed in this paper. The experimental result shows that the proposed system is able to achieve > 9 kbps using only a common smartphone camera receiver.

Application and Performance Analysis of Machine Learning for GPS Jamming Detection (GPS 재밍탐지를 위한 기계학습 적용 및 성능 분석)

  • Jeong, Inhwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.47-55
    • /
    • 2019
  • As the damage caused by GPS jamming has been increased, researches for detecting and preventing GPS jamming is being actively studied. This paper deals with a GPS jamming detection method using multiple GPS receiving channels and three-types machine learning techniques. Proposed multiple GPS channels consist of commercial GPS receiver with no anti-jamming function, receiver with just anti-noise jamming function and receiver with anti-noise and anti-spoofing jamming function. This system enables user to identify the characteristics of the jamming signals by comparing the coordinates received at each receiver. In this paper, The five types of jamming signals with different signal characteristics were entered to the system and three kinds of machine learning methods(AB: Adaptive Boosting, SVM: Support Vector Machine, DT: Decision Tree) were applied to perform jamming detection test. The results showed that the DT technique has the best performance with a detection rate of 96.9% when the single machine learning technique was applied. And it is confirmed that DT technique is more effective for GPS jamming detection than the binary classifier techniques because it has low ambiguity and simple hardware. It was also confirmed that SVM could be used only if additional solutions to ambiguity problem are applied.

A study on the implementation of digital anti-fire monitoring system with multipoint communication protocol (다중포인트 통신 프로토콜을 지원하는 디지털 화재 방지 모니터링 시스템 구현에 관한 연구)

  • Kim, Ki-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1423-1428
    • /
    • 2012
  • In this paper, we investigated an implementation of anti-fire monitoring system based on the RS-485 communication to support local area coverage within a range of 1 Km range. We developed a Multi Point Communication Protocol supporting input/output information processing and control up to 8128 terminal check points, which provides an interface between the anti-fire monitoring system receiver and multiplex transponders. Additionally, a multiplex transponders controller has been designed for the implemented system to comply with the government regulation on fire protection, especially to monitor, report and control 1016 terminal check points within the time limit.

The Gaurantee of Real-Time Vital Sign Information Service Message of Patient Monitoring System in Distributed Network Systems (분산 네트워크 시스템에서 환자 모니터링 시스템의 실시간 생체정보 서비스 메시지 보장)

  • Lim, Se-Jung;Kim, Gwang-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.2
    • /
    • pp.162-167
    • /
    • 2009
  • In this paper, we present a patient real-time vital sign information transmission system to effectively support developing real-time communication service by using a real-time object model named TMO (Time-Triggered Message-Triggered Object). Also, we describes the application environment as the PMS(Patient Monitoing System) to guarantee real-time service message with TMO structure in distributed network systems. We have to design to obtain useful vital sign information, which is generated at parsing data receiver modulor of HIS with TMO structure, that is offered by the central monitor of PMS. Vital sign informations of central monitor is composed of the raw data of several bedsite patient monitors. We are willing to maintain vital sign information of real time and continuity that is generated from the bedsite patient monitor. In the real time simulation techniques based on TMO object modeling, we have observed several advantages to the TMO structuring scheme. TMO object modeling has a strong traceability between requirement specification and design.

  • PDF

Study of the UCAS Susceptibility Parameters and Sensitivities by using Monte-Carlo Simulation (몬테카를로 모사법을 이용한 무인전투기의 위약도에 영향을 미치는 파라미터와 민감도에 대한 연구)

  • Choi, Kwang-Sik;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.242-253
    • /
    • 2011
  • The typical missions for the current stand-off UAVs are surveillance and reconnaissance. On the other hand, the primary mission for the future UCAS will be combat mission such as SEAD under the man-made ultimately hostile environment including SAM, antiaircraft artillery, threat radar, etc. Therefore, one of the most important challenges in UCAS design is improvement of survivability. The current studies for aircraft combat survivability are focused on the improvement of susceptibility and vulnerability of manned aircraft system. Although the survivability design methodology for UCAS might be very similar to the manned combat system but there are some differences in mission environment, system configuration, performance between manned and unmanned systems. So the parameters and their sensitivities which affect aircraft combat survivability are different in qualitatively and quantitatively. The susceptibility related parameters for F-16 C/D and X-45A as an example of manned and unmanned system are identified and the susceptibility parameter sensitivities are analyzed by using Monte-Carlo Simulation in this study.

Design of a Full Polarimetric Scatterometer for X-Band (X-밴드용 완전 편파 Scatterometer 설계)

  • Hwang, Ji-Hwan;Lee, Kyung-Yup;Park, Seong-Min;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1308-1315
    • /
    • 2009
  • A full-polarimetric scatterometer(HPS: Hongik Polarimetric Scatterometer) for X-band is designed, fabricated, and verified using the theoretically well-known point-targets in this paper. The X-band full-polarimetric scatterometer consists of an OMT(Orthogonal-Mode Transducer)+horn antenna, the angle control part for the OMT+horn antenna, a transmitter/receiver with a network analyzer and a frequency-conversion circuitry, and a movable support of these parts. We use an inclinometer sensor to control the vertical and horizontal incidence angles. The full polarimetric data can be obtained because of the polarization switches and the OMT. The accuracy of the scatterometer system is verified by measuring the polarimetric RCS(Radar Cross Section) of one of the theoretically well-known point-targets, i.e., a corner reflector.

Development and Evaluation of Electronic Health Record Data-Driven Predictive Models for Pressure Ulcers (전자건강기록 데이터 기반 욕창 발생 예측모델의 개발 및 평가)

  • Park, Seul Ki;Park, Hyeoun-Ae;Hwang, Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.5
    • /
    • pp.575-585
    • /
    • 2019
  • Purpose: The purpose of this study was to develop predictive models for pressure ulcer incidence using electronic health record (EHR) data and to compare their predictive validity performance indicators with that of the Braden Scale used in the study hospital. Methods: A retrospective case-control study was conducted in a tertiary teaching hospital in Korea. Data of 202 pressure ulcer patients and 14,705 non-pressure ulcer patients admitted between January 2015 and May 2016 were extracted from the EHRs. Three predictive models for pressure ulcer incidence were developed using logistic regression, Cox proportional hazards regression, and decision tree modeling. The predictive validity performance indicators of the three models were compared with those of the Braden Scale. Results: The logistic regression model was most efficient with a high area under the receiver operating characteristics curve (AUC) estimate of 0.97, followed by the decision tree model (AUC 0.95), Cox proportional hazards regression model (AUC 0.95), and the Braden Scale (AUC 0.82). Decreased mobility was the most significant factor in the logistic regression and Cox proportional hazards models, and the endotracheal tube was the most important factor in the decision tree model. Conclusion: Predictive validity performance indicators of the Braden Scale were lower than those of the logistic regression, Cox proportional hazards regression, and decision tree models. The models developed in this study can be used to develop a clinical decision support system that automatically assesses risk for pressure ulcers to aid nurses.