• 제목/요약/키워드: Electron wavelength

검색결과 378건 처리시간 0.026초

온도에 따른 실리콘 나노결정 PL 특성 (PL characteristics of silicon-nanocrystals as a function of temperature)

  • 김광희;김광일;권영규;이용현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 제5회 영호남 학술대회 논문집
    • /
    • pp.93-93
    • /
    • 2003
  • Photoluminescence(PL) properties of Silicon nanocrystals (nc-Si) as a function of temperature is reported to consider the mechanism of PL. Nc-Si has been made by $Si^+$ ion-implantation into thermal $SiO_2$ and subsequent annealing. And after gold had been diffused at the same samples above, the resultant PL spectra has been compared to the PL spectra from the non-gold doped nc-Si. PL peak energy variation from nc-Si is same with the variation of energy bandgap of bulk silicon as temperature changes from 6 K to room temperature. This result may mean nc-Si is still indirect transition material like bulk silicon. Gold doped nc-Si reveals short peak wavelength of PL spectrum than gold undoped one. PL peak shift through gold doing process shows clearly the PL mechanism is not from defect or interface states. PL intensity increases from 6K to a certain temperature and then decrease to room temperature. This characteristic with temperature shows that phonon have a role for the luminescence as theory explains that electron and hole can be recombined radiatively by phonon's assist in nc-Si, which is almost impossible in bulk silicon. Therefore luminescence is observed in nc-Si constructed less than a few of unit cell and the peak energy of luminescence can be higher than the bulk bandgap energy by the bandgap widening effect occurs in nanostructure.

  • PDF

Effect of Au-ionic Doping Treatment on SWNT Flexible Transparent Conducting Films

  • 민형섭;정명선;최원국;김상식;이전국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.111.1-111.1
    • /
    • 2012
  • Interest in flexible transparent conducting films (TCFs) has been growing recently mainly due to the demand for electrodes incorporated in flexible or wearable displays in the future. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched Arc-discharge SWNTs were dispersed in deionized water by adding sodium dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then was doped with Au-ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. This was confirmed and discussed on the XPS and UPS studies. We show that 87 ${\Omega}/{\Box}$ sheet resistances with 81% transmittance at the wavelength of 550nm. The changes in electrical and optical conductivity of SWNT film before and after Au-ionic doping treatments were discussed. The effect of Au-ion treatment on the electronic structure change of SWNT films was investigated by Raman and XPS.

  • PDF

시안기를 가진 유기 EL 물질들의 합성 및 유기 EL 소자에서의 발광특성평가 (Synthesis of Organic EL Materials with Cyano Group and Evaluation of Emission Characteristics in Organic EL Devices)

  • 김동욱
    • 대한화학회지
    • /
    • 제43권3호
    • /
    • pp.315-320
    • /
    • 1999
  • 고성능 전계발광(electroluminescent, EL) 소자에 사용되는 발광물질의 개발을 위하여 설계된 발광기능기의 분자구조는 비스스틸렌구조의 발광기능기에 전자주입과 수송을 위한 시안기와 정공주입과 수송을 위한 페닐아민기를 가진 구조이다. 위의 발광기능기로 구성 된 고분자물질, PU-BCN과 저분자물질, D-BCN을 합성하였다. PU-BCN과 D-BCN을 발광층으로 사용하여 만들어진 단층형 소자(SL)의 구조는 Indium-tin oxide(ITO)/발광층/MgAg이고, 적층형소자의 구조는 ITO/발광층/oxadiazole dehvative/MgAg, (DL-E)와 ITO/tri-phenylamine derivative/발광층/MgAg,(DL-H)의 두 종류이다. 동일한 발광기능기를 가진 고분자 발광물질, PU-BCN과 저분자발광물질, D-BCN은 전하주입과 수송성이 띄어난 물질로 평가되었으며, 두 발광물질들은 높은 전류밀도하에서 거의 동일한 발광특성을 보였다. 발광물질들의 최대 발광 피이크는 약 640 nm의 적색 발광영역에서 측정되었다.

  • PDF

자성광촉매용 TiO2-Fe2O3 나노복합분말의 합성 (Synthesis of TiO2-Fe2O3 Nanocomposite Powders for Magnetic Photocatalyst)

  • 이창우;김순길;윤성희;이재성;좌용호
    • 한국재료학회지
    • /
    • 제15권8호
    • /
    • pp.508-513
    • /
    • 2005
  • [ $TiO_2-Fe_2O_3$ ] nanocomposite powders for magnetic photocatalyst were synthesized by sol-gel process, in which $TiO_2$ photocatalytic layer was formed on the surface of $\gamma-Fe_2O_3$ magnetic core. Transmission electron microscopy (TEM) observation and X-ray diffractometry (XRD) analysis revealed that$\gamma-Fe_2O_3$ nanoparticles, $10\~20nm$ in diameter, were coated by $TiO_2$ shell of 5nm in thickness and $TiO_2$ was anatase phase. Also hydroxyl group (-OH) used to decompose organic compounds was detected by Fourier transformation infrared spectrometry(FT-IR) analysis. UV-Visible spectrophotometry results showed that light absorption occurred in the wavelength range of $400\~700 nm$, and the band gap energy $(E_g)$ of powder was 1.8 eV. Finally it was found that the coercivity $(H({ci})$ and saturation magnetization $(M_s)$ of the powder were 79 Oe and 14.8 emu/g, respectively as experimental vibrating sample magnetometer (VSM) measurements.

Sol-gel 법을 이용한 코어-쉘 실리카-형광체의 제조 및 특성평가 (Synthesis and Characterization of Core-Shell Silica-Phosphor Nanoparticles via Sol-Gel Process)

  • 신원호;김세윤;정형모
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.12-18
    • /
    • 2018
  • Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost $SiO_2$ spheres to rare-earth phosphor ($YVO_4:Eu^{3+}$, $YVO_4:Er^{3+}$, and $YVO_4:Nd^{3+}$) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The $SiO_2$ sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core-shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of $SiO_2$ nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of $Eu^{3+}$, $Er^{3+}$, and $Nd^{3+}$. Moreover, the photoluminescent properties of the core-shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost $SiO_2$ for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.

Eutectic Temperature Effect on Au Thin Film for the Formation of Si Nanostructures by Hot Wire Chemical Vapor Deposition

  • Ji, Hyung Yong;Parida, Bhaskar;Park, Seungil;Kim, MyeongJun;Peck, Jong Hyeon;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.63-68
    • /
    • 2013
  • We investigated the effects of Au eutectic reaction on Si thin film growth by hot wire chemical vapor deposition. Small SiC and Si nano-particles fabricated through a wet etching process were coated and biased at 50 V on micro-textured Si p-n junction solar cells. Au thin film of 10 nm and a Si thin film of 100 nm were then deposited by an electron beam evaporator and hot wire chemical vapor deposition, respectively. The Si and SiC nano-particles and the Au thin film were structurally embedded in Si thin films. However, the Au thin film grew and eventually protruded from the Si thin film in the form of Au silicide nano-balls. This is attributed to the low eutectic bonding temperature ($363^{\circ}C$) of Au with Si, and the process was performed with a substrate that was pre-heated at a temperature of $450^{\circ}C$ during HWCVD. The nano-balls and structures showed various formations depending on the deposited metals and Si surface. Furthermore, the samples of Au nano-balls showed low reflectance due to surface plasmon and quantum confinement effects in a spectra range of short wavelength spectra range.

Green synthesis of fluorescent carbon dots from carrot juice for in vitro cellular imaging

  • Liu, Yang;Liu, Yanan;Park, Mira;Park, Soo-Jin;Zhang, Yifan;Akanda, Md Rashedunnabi;Park, Byung-Yong;Kim, Hak Yong
    • Carbon letters
    • /
    • 제21권
    • /
    • pp.61-67
    • /
    • 2017
  • We report the use of carrot, a new and inexpensive biomaterial source, for preparing high quality carbon dots (CDs) instead of semi-conductive quantum dots for bioimaging application. The as-derived CDs possessing down and up-conversion photoluminescence features were obtained from carrot juice by commonly used hydrothermal treatment. The corresponding physiochemical and optical properties were investigated by electron microscopy, fluorescent spectrometry, and other spectroscopic methods. The surfaces of obtained CDs were highly covered with hydroxyl groups and nitrogen groups without further modification. The quantum yield of as-obtained CDs was as high as 5.16%. The cell viability of HaCaT cells against a purified CD aqueous solution was higher than 85% even at higher concentration ($700{\mu}g\;mL^{-1}$) after 24 h incubation. Finally, CD cultured cells exhibited distinguished blue, green, and red colors, respectively, during in vitro imaging when excited by three wavelength lasers under a confocal microscope. Offering excellent optical properties, biocompatibility, low cytotoxicity, and good cellular imaging capability, the carrot juice derived CDs are a promising candidate for biomedical applications.

원통형 타겟 타입 Pulsed DC Magnetron Sputtering에서 두께 변화에 따른 Al-doped ZnO 박막의 특성 변화 (Thickness Dependent Properties of Al-doped ZnO Film Prepared by Using the Pulsed DC Magnetron Sputtering with Cylindrical Target)

  • 신범기;이태일;박강일;안경준;명재민
    • 한국재료학회지
    • /
    • 제20권1호
    • /
    • pp.47-50
    • /
    • 2010
  • Various thicknesses of Al-doped ZnO (AZO) films were deposited on glass substrate using pulsed dc magnetron sputtering with a cylindrical target designed for large-area high-speed deposition. The structural, electrical, and optical properties of the films of various thicknesses were characterized. All deposited AZO films have (0002) preferred orientation with the c-axis perpendicular to the substrate. Crystal quality and surface morphology of the films changed according to the film thickness. The samples with higher surface roughness exhibited lower Hall mobility. Analysis of the measured data of the optical band gap and the carrier concentration revealed that there were no changes for all the film thicknesses. The optical transmittances were more than 85% regardless of film thickness within the visible wavelength region. The lowest resistivity, $4.13\times10^{-4}\Omega{\cdot}cm^{-1}$ was found in 750 nm films with an electron mobility $(\mu)$ of $10.6 cm^2V^{-1} s^{-1}$ and a carrier concentration (n) of $1.42\times10^{21} cm^{-3}$.

산소 유량비 변화에 따른 AlN 박막의 구조, 표면 및 광학적 특성 (Structural, Morphological, and Optical Properties of AlN Thin Films Subjected to Oxygen Flow Ratio)

  • 조신호;김문환
    • 한국진공학회지
    • /
    • 제19권4호
    • /
    • pp.287-292
    • /
    • 2010
  • 산소 유량비 변화에 따른 라디오파 반응성 마그네트론 스퍼터링 방법으로 성장된 AlN 박막의 구조, 표면 및 광학적 특성을 조사하였다. AlN 박막은 기판 온도 $300^{\circ}C$에서 성장되었으며, 반응성 가스로 질소와 산소 가스를 사용하였다. 산소 유량비는 공급되는 질소와 산소 혼합 가스양에 대한 산소의 유량비로 선택하여 0%, 10%, 15%, 20%, 25%, 30%로 제어하였다. 성장된 AlN 박막의 구조, 표면과 광학적 특성은 각각 X-선 회절장치, 전자주사현미경과 자외선-가시광 분광기를 사용하여 조사하였다. 산소 유량비 10%로 증착된 AlN 박막은 350~1,100 nm 파장 영역에서 평균 91.3%의 투과율과 4.30 eV의 광학 밴드갭 에너지를 나타내었다. 실험 결과는 산소 유량비를 변화시킴으로써 AlN 박막을 선택적으로 성장시킬 수 있음을 제시한다.

강판상에 굴 패각을 이용한 탄산칼슘 피막의 형성 (Formation of Calcareous Deposit on Steel Plate by using Waste Oyster Shell)

  • 김범수;권재성;김연원;이명훈;양정현
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.531-535
    • /
    • 2017
  • Enormous amount of waste oyster-shell (OS) has a major disposal problem in coastal regions. OSs have attracted much attention for recycling, because these are mainly composed of calcium carbonate with rare impurities. In this study, we demonstrate the calcareous deposit films on steel plate by using OSs on the basic of cathodic protection technique. The composition of the OSs was analyzed by wavelength dispersive X-ray fluorescence spectrometer. Carbon dioxide gas was pumped into distilled water to make carbonic acid solution for dissolution of OS. The calcareous deposit was characterized by second electron microscope (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction. Corrosion rates were estimated by measurements of anodic polarization and immersion test. It is confirmed that calcareous deposits on steel plate are formed under all condition of cathodic protection by using waste OS from the SEM and EDX results. Calcareous deposits on steel by OS provide good corrosion resistance by acting as a barrier to oxygen supply to the steel surface.