• Title/Summary/Keyword: Electron transport

Search Result 989, Processing Time 0.03 seconds

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF

Mixed-mode simulation of transient characteristics of 4H-SiC DMOSFETs - Impact off the interface changes (Mixde-mode simulation을 이용한 4H-SiC DMOSFETs의 계면상태에서 포획된 전하에 따른 transient 특성 분석)

  • Kang, Min-Seok;Choe, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.55-55
    • /
    • 2009
  • Silicon Carbide (SiC) is a material with a wide bandgap (3.26eV), a high critical electric field (~2.3MV/cm), a and a high bulk electron mobility (${\sim}900cm^2/Vs$). These electronic properties allow high breakdown voltage, high frequency, and high temperature operation compared to Silicon devices. Although various SiC DMOSFET structures have been reported so far for optimizing performances. the effect of channel dimension on the switching performance of SiC DMOSFETs has not been extensively examined. In this paper, we report the effect of the interface states ($Q_s$) on the transient characteristics of SiC DMOSFETs. The key design parameters for SiC DMOSFETs have been optimized and a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. has been used to understand the relationship with the switching characteristics. To investigate transient characteristic of the device, mixed-mode simulation has been performed, where the solution of the basic transport equations for the 2-D device structures is directly embedded into the solution procedure for the circuit equations. The result is a low-loss transient characteristic at low $Q_s$. Based on the simulation results, the DMOSFETs exhibit the turn-on time of 10ns at short channel and 9ns at without the interface charges. By reducing $SiO_2/SiC$ interface charge, power losses and switching time also decreases, primarily due to the lowered channel mobilities. As high density interface states can result in increased carrier trapping, or recombination centers or scattering sites. Therefore, the quality of $SiO_2/SiC$ interfaces is important for both static and transient properties of SiC MOSFET devices.

  • PDF

Impedance-Based Characterization of 2-Dimenisonal Conduction Transports in the LaAlO3/SrxCa1-xTiO3/SrTiO3 systems

  • Choi, Yoo-Jin;Park, Da-Hee;Kim, Eui-Hyun;Park, Chan-Rok;Kwon, Kyeong-Woo;Moon, Seon-Young;Baek, Seung-Hyub;Kim, Jin-Sang;Hwang, Jinha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.171.2-171.2
    • /
    • 2016
  • The 2-dimensiona electron gas (2DEG) layers have opened tremendous interests in the heterooxide interfaces formed between two insulating materials, especially between LaAlO3 and $SrTiO_3$. The 2DEG layers exhibit extremely high mobility and carrier concentrations along with metallic transport phenomena unlike the constituent oxide materials, i.e., $LaAlO_3$ and $SrTiO_3$. The current work inserted artificially the interfacial layer, $Sr_xCa_{1-x}TiO_3$ between $LaAlO_3$ and $SrTiO_3$, with the aim to controlling the 2-dimensional transports. The insertion of the additional materials affect significantly their corresponding electrical transports. Such features have been probed using DC and AC-based characterizations. In particular, impedance spectroscopy was employed as an AC-based characterization tool. Frequency-dependent impedance spectroscopy have been widely applied to a number of electroceramic materials, such as varistors, MLCCs, solid electrolytes, etc. Impedance spectroscopy provides powerful information on the materials system: i) the simultaneous measurement of conductivity and dielectric constants, ii) systematic identification of electrical origins among bulk-, grain boundary-, and electrode-based responses, and iii) the numerical estimation on the uniformity of the electrical origins. Impedance spectroscopy was applied to the $LaAlO_3/Sr_xCa_{1-x}TiO_3/SrTiO_3$ system, in order to understand the 2-dimensional transports in terms of the interfacial design concepts. The 2-dimensional conduction behavior system is analyzed with special emphasis on the underlying mechanisms. Such approach is discussed towards rational optimization of the 2-dimensional nanoelectronic devices.

  • PDF

Triptolide Mimics the Effect of Dietary Restriction on Lifespan and Retards Age-related Diseases in Caenorhabditis elegans (트립톨라이드가 식이제한에 의한 수명연장과 노화관련 질환에 미치는 영향)

  • Beak, Sun-Mi;Park, Sang-Kyu
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.931-937
    • /
    • 2018
  • Triptolide is a compound found in Tripterygium wilfordii and reported to have an anti-inflammatory and anti-oxidant activities. A previous study shows that the dietary supplementation with triptolide increases resistance to environmental stressors, including oxidative stress, heat shock, and ultraviolet irradiation, and extends lifespan in C. elegans. Here, we investigated the underlying mechanisms involved in the lifespan-extending effect of triptolide. The effect of triptolide on age-related diseases, such as diabetes mellitus and Alzheimer's disease, was also examined using animal disease models. The longevity phenotype conferred by triptolide was not observed in the eat-2 mutant, a well-known genetic model of dietary restriction, while there was an additional lifespan extension with triptolide in age-1 and clk-1 mutants. The long lifespan of age-1 mutant is resulted from a reduced insulin/IGF-1-like signaling and the clk-1 mutant lives longer than wild-type due to dysfunction of mitochondrial electron transport chain reaction. The effect of dietary restriction using bacterial dilution on lifespan also overlapped with that of triptolide. The toxicity of high glucose diet or transgenic human amyloid beta gene was significantly suppressed by the supplementation with triptolide. These findings suggest that triptolide can mimic the effect of dietary restriction on lifespan and onset of age-related diseases. We conclude that triptolide can be a strong candidate for the development of dietary restriction mimetics.

Preparation and characterization of nearly stoichiometric $LiNbO_3$ crystals by VTE method (VTE법에 의한 nearly stoichiometric $LiNbO_3$의 성장 및 특성)

  • 김상수;유동선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.6-17
    • /
    • 1997
  • Lithium niobate single crystals with various [Li]/[Nb] ratios were grown by the Czochralski method from melts having compositions varing between 48.6 ~ 58.0 mol % $Li_2O$. A vapor transport equilibration technique has been used to improve the homogeneity and adjust the [Li]/[Nb] ratio in small $LiNbO_3$ single crystals grown by the Czochralski method. When equilibrated with a Li-rich powder (65 mol%$Li_2O$), containing a mixture of $LiNbO_3$ and $Li_3NbO_4$, crystals of nearly stoichiometric composition can be obtained. This was established by studying the composition dependence of the following properties; lineshape, intensity and linewidth for the electron paramagnetic resonance (EPR) of $Fe^{3+}$ energy of the fundamental absorption edge and $OH^-$ absorption spectra.

  • PDF

Salmonella Typhimurium SL1344 Utilizing Human Transferrin-bound Iron as an Iron Source Regardless of Siderophore-mediated Uptake (Salmonella Typhimurium SL1344의 사람의 트렌스페린(hTf)에 부착된 철 이용에 관한 연구)

  • Choe, Yunjeong;Yoo, Ah Young;Kim, Sam Woong;Hwang, Jihwan;Kang, Ho Young
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.72-77
    • /
    • 2017
  • Inorganic iron is essential for various metabolic processes, including RNA synthesis, electron transport, and oxygen detoxification in microorganisms. Many bacterial pathogens compete for iron acquisition in diverse environmental condition such as host. Salmonella Typhimurium SL1344 also requires inorganic iron as a cofactor for growth. When a M9 minimal liquid medium was supplemented with ethylenediamine di-o-hydroxyphenylactic acid (EDDA) which acts as an iron-chelating agent, growth of Salmonella Typhimurium SL1344 in the supplemented medium was completely arrested by deficient of useful iron under iron-depleted condition. However, a number of siderophores, which are small, high-affinity iron chelating compounds secreted by microorganisms such as bacteria and fungi, were produced for utilization of restricted iron under iron-depleted condition. A M9 minimal liquid medium complemented with human transferrin (hTf)-iron complex turned completely off production of siderophores, but growth of Salmonella Typhimurium SL1344 maintained level similar to compare one complemented with iron (III) chloride (FeCl3). This means that human transferrin (hTf)-bound iron can utilize via directly interaction with Salmonella Typhimurium SL1344 without productions of siderophores. Through construction and analysis of negative mutant for utilization of human transferrin (hTf)-bound iron, we confirm that the bacterium can directly use human transferrin (hTf)-bound iron without extracellularly intermediated carriers such as siderophores.

Optimization of Fermentation Conditions for CoQ10 Production Using Selected Bacterial Strains (CoQ10 생성 세균의 선별 및 발효조건 최적화)

  • Jeong, Keun-Il;Kang, Won-Hwa;Lee, Jung-Ah;Shin, Dong-Ha;Bae, Kyung-Sook;Park, Ho-Young;Park, Hee-Moon
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.46-51
    • /
    • 2010
  • Coenzyme Q10 (CoQ10) is an essential lipid-soluble component of membrane-bound electron transport chains. CoQ10 is involved in several aspects of cellular metabolism and is increasingly being used in therapeutic applications for several diseases. Despite the recent accomplishments in metabolic engineering of Escherichia coli for CoQ10 production, the production levels are not yet competitive with those by fermentation or isolation. So we tested several microorganisms obtained from the KCTC of Biological Resource Center to find novel sources of strain-development for CoQ10-production. Then we selected two strains, Paracoccus denitrificans (KCTC 2530) and Asaia siamensis (KCTC 12914), and tested to optimize the CoQ10 production conditions. Among the carbon sources tested, CoQ10 production was the highest when fructose was supplied about 4% concentration. Yeast extract produced the highest CoQ10 production about 2% concentration. The highest CoQ10 production was obtained at pH 6.0 for P. denitrificans and pH 8.0 for A. siamensis. And two strains showed the highest CoQ10 production at $30^{\circ}C$, but the highest DCW was obtained at $37^{\circ}C$. In the fed-batch culture, P. denitrificans yielded $14.34{\pm}0.473$ mg and A. siamensis yielded $12.53{\pm}0.231$ mg of final CoQ10 production.

Effect of a Serial Irradiation of Low Dose Gamma Rays on the Growth and Photosynthesis of Red Pepper (Capsicum annuum L.) Plants

  • Kim, Jin-Hong;Chung, Byung Yeoup;Wi, Seung Gon;Baek, Myung-Hwa;Lee, Myung Chul;Kim, Jae-Sung
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.537-542
    • /
    • 2004
  • To reveal the relationship between the changes in the growth and photo- synthesis induced by low dose radiation, red pepper (Capsicum annuum L.) plants were serially irradiated three times with gamma rays of 0.5, 1, 2, 3, and 4 Gy. The plant growth was monitored by the fresh weight, the stem length, and the leaf length & width. All the irradiation groups (0.5-4 Gy) were stimulated in growth at 1 day after the $1^{st}$ irradiation (DA1I), but rather inhibited at 3 days after the $3^{rd}$ irradiation (DA3I). The maximum photochemical efficiency (Fv/Fm), the photochemical quenching (qP), the non-:photochemical quenching (NPQ) and the apparent rate of the photosynthetic electron transport (ETR) were used to represent the changes in the photosynthesis by the serial irradiation. The irradiation groups except 0.5 Gy had higher Fv/Fm values at 3 DA3I than the control one. After the 3$^{rd}$ irradiation, the qP values appeared to be a little lower in the 1-4 Gy groups than in the control and 0.5 Gy ones. In contrast, the NPQ values were rather higher in the irradiation groups except 0.5 Gy. During the whole experimental period, the ETRs decreased in the control group but remained relatively constant in the 4-Gy one. In conclusion, the results obtained indicate that the stimulatory effect of ionizing radiation on the plant growth was determined by the incident dose of the single irradiation rather than by the cumulative one of the serial irradiation. They also demonstrate that the growth stimulation induced by a low dose radiation could not be positively correlated with an alteration in the photosynthesis. Additionally, we discuss in text that an ionizing radiation may partly protect the leaf senescence by delaying the development of the plants.

Effects of 5-azacytidine, a DNA methylation inhibitor, on embryogenic callus formation and shoot regeneration from rice mature seeds (벼 성숙종자로부터 배상체 캘러스 형성 및 식물체 재분화에 DNA methylation 억제제인 5-azacytidine의 영향)

  • Lee, Yeon-Hee;Lee, Jung-Sook;Kim, Soo-Yun;Sohn, Seong-Han;Kim, Dool-Yi;Yoon, In-Sun;Kweon, Soon-Jong;Suh, Seok-Chul
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • The modification of DNA and histone plays an important role for gene expression in plant development. The objective of this research is to observe the effects of methylation on the gene expression during dedifferentiation from rice mature seeds to callus and differentiation from callus to shoots. The embryogenic callus with ability to shoot regeneration was not induced on the N6A medium supplemented with 5-azacytidine and abnormal callus with brown color was formed. When the normal rice callus was placed on the regeneration MSRA medium supplemented with 5-azacytidine, the shoot regeneration was inhibited. The results showed that 5-azacytidine, DNA demethylating agent, had negative effects on normal embryogenic callus formation and shoot regeneration. This suggested that DNA methylation of some genes was required for normal cell dedifferentiation and differentiation in tissue culture. The microarray and $GeneFishig^{TM}$ DEG screening were used to observe the gene transcript profile in callus induction and regeneration on N6A (N6 medium + 5-azaC) and MSRA (MS regeneration medium + 5-azaC). Subsets of genes were up-regulated or down-regulated in response to 5-azaC treatments. The genes related with epigenetic regulation, electron transport, nucleic acid metabolism and response to stress were up and down regulated. The different expression of some genes (germin like protein etc.) during callus induction and shoot regeneration was confirmed using RT-PCR and northern blot analysis.

Involvement of Oxidative Stress and Poly(ADP-ribose) Polymerase Activation in 3-Nitropropionic Acid-induced Cytotoxicity in Human Neuroblastoma Cells

  • Nam, Eun-Joo;Lee, Young-Jae;Oh, Young-Ah;Jung, Jin-Ah;Im, Hye-In;Koh, Seong-Eun;Maeng, Sung-Ho;Joo, Wan-Seok;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.325-331
    • /
    • 2003
  • 3-Nitropropionic acid (3-NP) inhibits electron transport in mitochondria, leading to a metabolic failure. In order to elucidate the mechanism underlying this toxicity, we examined a few biochemical changes possibly involved in the process, such as metabolic inhibition, generation of reactive oxygen species (ROS), DNA strand breakage, and activation of Poly(ADP-ribose) polymerase (PARP). Exposure of SK-N-BE(2)C neuroblastoma cells to 3-NP for 48 h caused actual cell death, while inhibition of mitochondrial function was readily observed when exposed for 24 h to low concentrations (0.2${\sim}$2 mM) of 3-NP. The earliest biochemical change detected with low concentration of 3-NP was an accumulation of ROS (4 h after 3-NP exposure) followed by degradation of DNA. PARP activation by damaged DNA was also detectable, but at a later time. The accumulation of ROS and DNA strand breakage were suppressed by the addition of glutathione or N-acetyl-L-cysteine (NAC), which also partially restored mitochondrial function and cell viability. In addition, inhibition of PARP also reduced the 3-NP-induced DNA strand breakage and cytotoxicity. These results suggest that oxidative stress and activation of PARP are the major factors in 3-NP-induced cytotoxicity, and that the inhibition of these factors may be useful in protecting neuroblastoma cells from 3-NP-induced toxicity.