• 제목/요약/키워드: Electron transfer reaction

검색결과 258건 처리시간 0.022초

6-Methylquinolinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응 속도 (Kinetics of the Oxidation of Substituted Benzyl Alcohols using 6-Methylquinolinium Dichromate)

  • 김영식;박영조
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5990-5996
    • /
    • 2011
  • $H_2O$ 용매 하에서 6-methylquinoline 과 chromium trioxide의 반응을 통하여 6-methylquinolinium dichromate [$(C_{10}H_9NH)_2Cr_2O_7$]를 합성하여, 적외선분광광도법(IR), 유도결합 플라즈마(ICP) 등으로 구조를 확인하였다. 여러 가지 용매 하에서 6-methylquinolinium dichromate를 이용하여 벤질 알코올의 산화반응을 측정한 결과 유전상수(${\varepsilon}$) 값이 큰 용매 순서인 시클로헥센 < 클로로포름 < 아세톤 < N,N-디메틸포름아미드 용매 하에서 높은 산화반응성을 보였다. 산촉매($H_2SO_4$)를 이용한 DMF 용매 하에서 6-methylquinolinium dichromat는 벤질 알코올과 그의 유도체들(p-$OCH_3$, m-$CH_3$, H, m-$OCH_3$, m-Cl, m-$NO_2$)을 효과적으로 산화시켰다. 그리고 전자받개 그룹들은 반응속도가 감소한 반면에 전자주개 치환체들은 반응속도를 증가시켰다. 또한 Hammett 반응상수(${\rho}$) 값은 -0.67(303K) 이였다. 그러므로 본 실험에서 알코올의 산화반응 과정은 속도결정단계에서 수소화 전이가 일어나는 메카니즘임을 알 수 있었다.

The Chemical Reactions of Superoxide with Halopyrimidines

  • 박군하;이창옥
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권1호
    • /
    • pp.104-106
    • /
    • 1989
  • Halopyrimidines such as 2-chloro-, 5-bromo, and 4,6-dichloro-5-nitropyrimidine undergo substitution reactions with superoxide anion radical (superoxide) to give the corresponding hydroxypyrimidines under suitable conditions. Parallel experiments employing hydroxide instead of superoxide strongly indicate that the reactivity of superoxide is comparable to that of the hydroxide in the reaction with halopyrimidines. The results seem to provide a piece of information in favor of the nucleophilic substitution rather than electron-transfer mechanism in the title reaction.

실리카가 코팅된 양자점의 코팅두께에 따른 광 특성 변화 (The Synthesis and Optical Properties of Silica Coated CdSe/ZnS QDs)

  • 이지혜;신현호;이종흔;현상일;구은회
    • 한국전기전자재료학회논문지
    • /
    • 제26권3호
    • /
    • pp.221-226
    • /
    • 2013
  • The water soluble quantum dots (QDs) are synthesized by the phase transfer and silica coating reaction. The photoluminescence intensity of silica-coated QDs are mainly affected by the amount of phase transfer agent, SDS (sodium dodecyl sulfate), and the maximum value is obtained at the cmc (critical micell concentration) concentration of SDS in the phase transfer reaction. Based on fluorescence spectra and field emission transmission electron microscope (FETEM), the energy transfer rate by forster resonance energy transfer (FRET) is increasing with the thickness of the silica shell coated on CdSe/ZnS QDs.

Hydrogen-Atom and Charge Transfer Reactions within Acetylene/Methanol and Ethylene/Methanol Heteroclusters

  • 신동남;최창주;정경훈;정광우
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권10호
    • /
    • pp.939-943
    • /
    • 1996
  • Reactions that proceed within mixed acetylene-methanol and ethylene-methanol cluster ions were studied using an electron-impact time-of-flight mass spectrometer. When acetylene and methanol seeded in helium are expanded and ionized by electron impact, the ion abundance ratio, [CH3OH+]/[CH2OH+] shows a propensity to increase as the acetylene/methanol mixing ratio increases, indicating that the initially ionized acetylene ion transfers its charge to adjacent methanol molecules within the clusters. Investigations on the relative cluster ion intensity distributions of [CH3OH2+]/[CH3OH+] and [(CH3OH)2H+]/[CH3OH·CH2OH+] under various experimental conditions suggest that hydrogen-atom abstraction reaction of acetylene molecule with CH3OH ion is responsible for the effective formation of CH2OH ion. In ethylene/methanol clusters, the intensity ratio of [CH3OH2]/[CH3OH] increases linearly as the relative concentration of methanol decreases. The prominent ion intensities of (CH3OH)mH over (CH3OH)m-1CH2OH ions (m=1, 2, and 3) at all mixing ratios are also interpreted as a consequence of hydrogen atom transfer reaction between C2H4 and CH3OH to produce the protonated methanol cluster ions.

Evaluation of the Function exp$(x^2)$ erfc(x) to Higher Precisions for Higher Order Derivative Polarography of CE-type Electrode Process

  • Kim, Myung-Hoon;Smith, Veriti P.;Hong, Tae-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권6호
    • /
    • pp.497-505
    • /
    • 1990
  • The function exp$(x^2)$erfc(x), which is often encountered in studies of electrode kinetics, is evaluated to an extended precision with 32 significant decimal digits in order to find theoretical relationships used in derivative polarography/voltammetry for a chemically-coupled electrode process. Computations with a lower precision are not successful. Evaluation of the function is accomplished by using three types of expansions for the function. Best ranges of arguments are selected for each equation for particular precisions for efficiencies. The method is successfully applied to calculate higher-order derivatives of the current-potential curves in all potential ranges for a reversible electron transfer reaction coupled with a prior chemical equilibrium (i.e., a CE type process). Various parameters that characterize the peak asymmetry (such as ratios of peak-heights, ratios of half-peak-widths, and separations in peak-potentials) are analyzed to find how kinetic and thermodynamic parameters influence shapes of the derivatives. The results from the CE process is compared with those from an EC process in which a reversible electron transfer is coupled with a follow-up homogeneous chemical reaction. The two processes exibit quite contrasting differences for values of the parameters.

Quantum Mechanical Studies for Proton Transfer in HOCl + HCl and H2O + ClONO2 on Water Clusters

  • Kim, Yong-Ho;Park, Chea-Yong;Kim, Kyung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.1953-1961
    • /
    • 2005
  • We have performed high-level quantum mechanical calculation for multiple proton transfer in HOCl + HCl and $H_2O$ + $ClONO_2$ on water clusters, which can be used as a model of the reactions on ice surface in stratospheric clouds. Multiple proton transfer on ice surface plays crucial role in these reactions. The structures of the clusters with 0-3 water molecules and the transition state structures for the multiple proton transfer have been calculated. The energies and barrier heights of the proton transfer were calculated at various levels of theory including multi-coefficient correlated quantum mechanical methods (MCCM) that have recently been developed. The transition state structures and the predicted reaction mechanism depend very much on the level of theory. In particular, the HF level can not correctly predict the TS structure and barrier heights, so the electron correlation should be considered appropriately.

마이크로 에멀젼 계면을 통과하는 광유발전자의 양자수득률 (Quantum Yield of Photoinduced Electron Transfer Across Microemulsion Interfaces)

  • 박용태
    • 대한화학회지
    • /
    • 제27권3호
    • /
    • pp.213-217
    • /
    • 1983
  • 태양에너지의 한 저장방법으로 녹색식물의 광합성을 모방한 계, 마이크로 에멀젼(microemulsion)을 고안하였으며, 이때 광에 의해서 유발된 전자가 계면을 통하는 능력을 측정하였다. 광증감제로 류테니늄비피리딘 착물$[Ru(bipy)_3]^{2+}$을 사용, 전자공여체 EDTA와 함께 물층에, 전자수용체 $HV^{2+}$(Hexadecyl violagan)이 계면에 각각 존재할 때 광에 의한 전자전이에 따르는 $HV^+$ 형성수득률은 0.12이였다. 또 계면에 $BNA^+$(Benzyl nicotinamide)를 넣고 유층에 아조(azo) 화합물을 넣었을 때는 azobenzene이 환원되었는데, 이때 양자수득률이 줄었다. (${\Phi}$ = 0.0016) 양이온 마이크로 에멀젼과 음이온 마이크로에멀젼의 광유발 전자전이 능력을 비교하였다. 광증감제로 유기염료인 로즈벤갈(Rose bengal)을 시험하였는데, 류테니늄착물보다 낮지 않았지만 광유발 전자가 계면에 전이되는 것을 알았다.

  • PDF

Comparison of Photocyclization Reactions of Fluoro- vs Nonfluoro-Substituted Polymethyleneoxy Donor Linked Phthalimides

  • Park, Hea Jung;Ryu, Young Ju;Kim, Kyung Mok;Yoon, Ung Chan;Kim, Eunae;Sohn, Youngku;Cho, Dae Won;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1108-1114
    • /
    • 2013
  • Photochemical reactions of fluoro- vs. nonfluoro-substituted polymethylenoxy chain linked phthalimide were carried out to explore how electronegative fluorine atoms inside the donor chain influence photocyclization reaction efficiencies and to briefly determine the alkali metal binding properties of the photoproducts. The results of this study show that the fluorine-substituted donor chain linked phthalimide undergoes inefficient photocyclization via single electron transfer (SET)-induced excited state pathways to generate 14-membered cyclic amidol compared to nonfluoro-analog due to low electron donor ability of the terminal oxygen donor site. These results show that photoinduced intramolecular SET processes arising from ${\alpha}$-silyl ether electron donors to phthalimides are largely dependent on the kinds of substituents inside donor chain. Finally, a preliminary study with the cyclic amidols generated in this effort showed that they have weak alkali metal cation binding properties regardless of absence/presence of fluoro-substituents.

Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1939-1944
    • /
    • 2011
  • The nucleophilic substitution reactions of bis(Y-aryl) chlorophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at 35.0 $^{\circ}C$. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorophosphates (2). The substrate 1 has one more identical substituent Y compared to substrate 2. The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of cross-interaction constant (CIC) from negative ${\rho}_{XY}$ = -1.31 (2) to positive ${\rho}_{XY}$ = +1.91 (1), indicating the change of reaction mechanism from a concerted $S_N2$ (2) to a stepwise mechanism with a rate-limiting leaving group departure from the intermediate (1). The deuterium kinetic isotope effects (DKIEs) involving deuterated anilines ($XC_6H_4ND_2$) show secondary inverse, $k_H/k_D$ = 0.61-0.87. The DKIEs invariably increase as substituent X changes from electron-donating to electron-withdrawing, while invariably decrease as substituent Y changes from electron-donating to electron-withdrawing. A stepwise mechanism with a rate-limiting bond breaking involving a predominant backside attack is proposed on the basis of positive sign of ${\rho}_{XY}$ and secondary inverse DKIEs.

Redox Potential of a Soybean Ferric Leghemoglobin Reductase

  • Kim, Hyun-Mi
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.444-452
    • /
    • 1998
  • The visible spectra of soybean ferric leghemoglobin reductase exhibited a charge transfer band at 530 nm under aerobic condition. Spectra of the oxidized enzyme show a flavin peak at 454 nm and the enzyme has three redox states associated with the active site of the enzyme. The enzyme has an active disulfide bridge and two-electron transfer may dominate in the ferric state of leghemoglobin reduction. The midpoint potentials of the enzyme were determined by spectrotitration to be -0.294 V for disulfide/dithiol and -0.318 V for FAD/$FADH_2$. Since the midpoint potentials for $NAD^+$/NADH and the ferrous/ferric states of leghemoglobin are -0.32 V and +0.22 V, respectively, it is proposed that two electrons are transferred sequentially from NADH to FAD, to the disulfide group, and then to the ferric state of leghemoglobin in the enzyme reaction.

  • PDF