• Title/Summary/Keyword: Electron accelerator

Search Result 253, Processing Time 0.041 seconds

PULSED NEUTRON FACILITY BASED ON AN ELECTRON LINAC

  • Kim, Guin-Yun;Son, Dong-Chul;Lee, Young-Seok;Ko, In-Soo;Cho, Moo-Hyun;Namkung, Won;Chang, Jong-Hwa
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.327-331
    • /
    • 2001
  • The Pohang Neutron Facility based on an electron linac was constructed in order to construct the infrastructure for nuclear data production in Korea. It consists of a 100-MeV electron linac, a water-cooled Ta target, and an 11-m time-of-flight path. We measured the time-of-flight path length, the neutron energy spectra for different water levels inside the moderator, and the neutron total cross sections of polyethylene and copper by the transmission method.

  • PDF

Experimental for Performance of electron 9un cathode electrode (Y-824) characteristics (전자총 캐소드전극(Y-824)의 특성실험)

  • Son, Y.G.;Kwon, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1552-1553
    • /
    • 2006
  • A thermionic gun of injector linac for pohang accelerator laboratory is required to generate beam pulse width less than 1 nsec. The gun uses cathode-grid assembly(EIMAC Y824) and operates up to 80 kV anode voltage. In order research characteristics of the electron gun, emission current from gun wear measured by the wall current monitor. In this paper the pulser system and characteristics of the emission current in region from 30 mA to 15 A are described.

  • PDF

A study on sub-nanosecoand pulser characteristic of electron gun (서브 나노초의 전자총 펄서 특성에 관한 연구)

  • Son, Y.G.;Jang, S.D.;Oh, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1662-1664
    • /
    • 2003
  • An electron gun system for a nanosecond pulse linac has been built and tested. The gun grid is driven with a grid pulser, which consists of an avalanche transistor pulser and parallel triode amplifier. The amplifier is installed in an end hole of the electron gun and provided for power amplification and polarity change of the output pulses of the avalanche transistor pulser. An output pulse of 200 V and 2 ns FWHM was obtained by using the grid pulser of can type transistors. Measurements with a test bench show that the electron gun can deliver 2ns pulse with with currents larger than 3A.

  • PDF

Emission Plasma Spectroscopy of High-pressure Microdischarges

  • Lee, Byeong-Jun;Ju, Yeong-Do;Kim, Seung-Hwan;Ha, Tae-Gyun;Gong, Hyeong-Seop;Park, Yong-Jeong;Park, Jong-Do;Nam, Sang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.253.2-253.2
    • /
    • 2014
  • Micro hollow cathode discharges (MHCDs) are high-pressure, non-equilibrium discharges. Those MHCDs are useful to produce an excimer radiation. A major advantage of excimer sources is their high internal efficiency which may reach values up to 40% when operated under optimum conditions. To produce strong excimer radiation, the optimisation of the discharge conditions however needs a detailed knowledge of the properties of the discharge plasma itself. The electron density and temperature influence the excitation as well as plasma chemistry reactions and the gas temperature plays a major role as a significant energy loss process limiting efficiency of excimer radiation. Most of the recent spectroscopic investigations are focusing on the ultraviolet or vacuum ultraviolet range for direct detection of the excimer. In our experiments we have concentrated on investigating the micro hollow cathodes from the near UV to the near infrared (300~850 nm) to measure the basic plasma parameters using standard plasma diagnostic techniques such as stark broadening for electron density and the relative line intensity method for electron temperature. Finally, the neutral gas temperature was measured by means of the vibrational rotational structures of the second positive system of nitrogen.

  • PDF

Development of Neutron Skyshine Evaluation Method for High Energy Electron Accelerator Using Monte Carlo Code (몬테카를로 코드를 이용한 고에너지 전자가속기의 중성자 skyshine 평가방법 개발)

  • Oh, Joo-Hee;Jung, Nam-Suk;Lee, Hee-Seock;Ko, Seung-Kook
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • The skyshine effect is an essential and important phenomenon in the shielding design of the high energy accelerator. In this study, a new estimation method of neutron skyshine was proposed and was verified by comparison with existing methods. The effective dose of secondary neutrons and photons at the locations that was far away from high-energy electron accelerator was calculated using FLUKA and PHITS Monte Carlo code. The transport paths of secondary radiations to reach a long distance were classified as skyshine, direct, groundshine and multiple-shine. The contribution of each classified component to the total effective dose was evaluated. The neutrons produced from the thick copper target irradiated by 10 GeV electron beam was applied as a source term of this transport. In order to evaluate a groundshine effect, the composition of soil on the PAL-XFEL site was considered. At a relatively short distance less than 50 m from the accelerator tunnel, the direct and groundshine components mostly contributed to the total effective dose. The skyshine component was important at a long distance. The evaluated dose of neutron skyshine agreed better with the results using Rindi's formula, which was based on the experimental results at high energy electron accelerator. That also agreed with the estimated dose using the simple evaluation code, SHINE3, within about 20%. The total effective dose, including all components, was 10 times larger than the estimated doses using other methods for this comparison. The influence of multiple-shine path in this evaluation of the estimation method was investigated to be bigger than one of pure skyshine path.

RECENT PROGRESS ON LASER DRIVEN ACCELERATORS AND APPLICATIONS

  • LEEMANS W. P.;ESAREY E.;GEDDES C.G.R.;SCHROEDER C. B.;TOTH CS.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.447-456
    • /
    • 2005
  • Laser driven accelerators promise to provide an alternative to conventional accelerator technology. They rely on the excitation of large amplitude density waves in a plasma by the photon pressure of an intense laser. The density oscillations in which electrons and ions are separated, result in extremely large longitudinal electric fields that can be several orders of magnitude larger than those that are used in today's radio-frequency accelerators. Whereas this principle had been demonstrated experimentally for nearly two decades, it was not until 2004 that the production of high quality electron beams around 100 MeV was demonstrated. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, are the keys to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short and long term prospects for intense radiation sources and high energy accelerators based on laser-drivenplasma accelerators.

Analysis of Dose Distribution According to the Initial Electron Beam of the Linear Accelerator: A Monte Carlo Study

  • Park, Hyojun;Choi, Hyun Joon;Kim, Jung-In;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.10-19
    • /
    • 2018
  • Background: Monte Carlo (MC) simulation is the most accurate for calculating radiation dose distribution and determining patient dose. In MC simulations of the therapeutic accelerator, the characteristics of the initial electron must be precisely determined in order to achieve accurate simulations. However, It has been computation-, labor-, and time-intensive to predict the beam characteristics through predominantly empirical approach. The aim of this study was to analyze the relationships between electron beam parameters and dose distribution, with the goal of simplifying the MC commissioning process. Materials and Methods: The Varian Clinac 2300 IX machine was modeled with the Geant4 MC-toolkit. The percent depth dose (PDD) and lateral beam profiles were assessed according to initial electron beam parameters of mean energy, radial intensity distribution, and energy distribution. Results and Discussion: The PDD values increased on average by 4.36% when the mean energy increased from 5.6 MeV to 6.4 MeV. The PDD was also increased by 2.77% when the energy spread increased from 0 MeV to 1.019 MeV. In the lateral dose profile, increasing the beam radial width from 0 mm to 4 mm at the full width at half maximum resulted in a dose decrease of 8.42% on the average. The profile also decreased by 4.81% when the mean energy was increased from 5.6 MeV to 6.4 MeV. Of all tested parameters, electron mean energy had the greatest influence on dose distribution. The PDD and profile were calculated using parameters optimized and compared with the golden beam data. The maximum dose difference was assessed as less than 2%. Conclusion: The relationship between the initial electron and treatment beam quality investigated in this study can be used in Monte Carlo commissioning of medical linear accelerator model.

Plasma Channel Expansion in a Laser-Induced Plasma (LIP) Using a Focused Laser Beam (집속된 레이저빔에 의한 레이저 유도 플라즈마 채널의 형성 및 팽창에 관한 연구)

  • Kim, Jong-Uk;Kim, Chang-Bum;Kim, Guang-Hoon;Lee, Hae-June;Hyyong Suk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.240-241
    • /
    • 2002
  • Propagation of an intense laser pulse through fully ionized plasma has been an interesting topic in many fields. It includes laser-driven electron accelerators,(1) generation of high harmonics,(2) soft x-ray laser development(3) and so on. Specifically, in the application of laser-driven electron accelerators a large laser-plasma interaction length is required to get sufficient acceleration energy of electron. (omitted)

  • PDF

Study on HV Nano-second Pulse Electron Gun System (고전압 Nano-second펄스 전자총에 관한 연구)

  • Son, Y.K.;Park, S.J.;Jang, S.D.;Oh, J.S.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1391-1393
    • /
    • 1995
  • An electron gun system for the Pohang Light Source has been installed and operated successfully. The basic design parameters are acceleration voltage of 80 kV, maximum peak emission current of 5 A, minimum pulse width of 1 ns, and maximum repetition rate of 100 Hz. The gun has a triode structure and is composed of a cathode, a focusing electrode(Wehnelt), and an anode. To sustain a $5{\times}10^{-9}$Torr vacuum, a $230{\ell}/s$ Ion pump has been adopted. We adopted a control and monitoring system based on the fiber-optic technology. In this article, we present the structure and operation principle of the system with special interest on the nanosecond pulser, remote control and monitoring system.

  • PDF

Experimental Analysis on Temperature Compensation of Capacitive Voltage Divider for a Pulsed High Voltage Measurement (고전압 펄스신호 측정용 분압기의 온도보상에 관한 실험)

  • Jang, S.D.;Son, Y.G.;Kwon, S.J.;Oh, J.S.;Cho, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1530-1533
    • /
    • 2005
  • Total 12 units of high power klystron-modulator systems as microwave source is under operation for 2.5-GeV electron linear accelerator in Pohang Light Source(PLS) linac. RF power and beam power of klystron are precisely measured for the effective control of electron beam. A precise measurement and measurement equipment with good response characteristics are required for this. Input power of klystron is calculated from the applied voltage and the current on its cathode. Tiny measurement error severely effects RF output power value of klystron. Therefore, special care is needed to measure precise beam voltage. Capacitive voltage divider(CVD) unit is intended for the measurement of beam voltage of 400 kV generated from the pulsed klystron-modulator system. Main parameter to determine the standard capacitance in the high arm of CVD is dielectric constant of insulation oil. Therefore CVD should be designed to have a minimum capacitance variation due to voltage, frequency and temperature in the measurement range. This paper will discuss the analysis of capacitive voltage divider for a pulsed high-voltage measurement, and the empirical relations between capacitance and oil temperature variation.

  • PDF