• 제목/요약/키워드: Electron accelerator

검색결과 255건 처리시간 0.026초

Alanine/ESR Spectroscopy에 의한 고에너지 전자선의 선량측정 (High Energy Electron Dosimetry by Alanine/ESR Spectroscopy)

  • 추성실
    • Radiation Oncology Journal
    • /
    • 제7권1호
    • /
    • pp.85-92
    • /
    • 1989
  • 물질에 방사선을 조사시키면 구성원자 또는 분자의 일부분이 전리되며 특수한 유기화합물은 장기간 free radical상태로 존재하고 그 밀도는 조사된 방사선량에 비례한다. Free radical상태의 물질에 마이크로파와 같은 전자파를 투과시키면 free radicl된 전자의 고유진동과 일치된 전자파를 흡수하는 전자스핀공명(Electron Spin Resonance)이 일어나며 흡수된 전파의 강도를 측정함으로서 조사된 방사선량을 추측할 수 있다. ESR를 이용한 free radical dosimeter로서 가장 잘 알려진 물질이 아미노산 alanine이므로 이것과 파라핀 $10\%$를 혼합하여 $0.4\times1cm$의 alanine dosimeter를 제작하였다. 측정 방법은 방사선 흡수선량을 직접 측정할 수 있도록 조직등가인 물 팬텀과 방수된 Alanine dosimeter holder를 제작하고 의료용 선형가속기에서 발생되는 $6\~21$ MeV전자선을 조사하면서 최대 흡수 선량과 깊이에 따른 선량분포를 측정하였다. 전자선 조사선량은 1 Gy에 60 Gy까지의 방사선 치료선량 범위를 선택하였으며 측정결과 전자선량 증가에 따라 ESR신호의 진폭이 선형비례적으로 증가하였다. 그러나 전자선량이 4 Gy이하에서는 alanine dosimeter의 선량 균일성 이 $\pm2\~4\%$ (표준편차)의 오차가 있었으며 4 Gy이상에서는 $\pm1\%$ 이하의 오차를 나타냄으로서 환자에 대한 전자선 조사량 범위인 1Gy에서 60Gy까지의 흡수선량을 정확히 측정할 수 있었다. 측정한 결과 전자선 에너지 12 MeV이하에서는 전리상으로 측정 계산된 선량과 일치하였지만 15 MeV이상에서는 표면에서 깊이 2cm까지의 흡수선량이 약$2\~5\%$가 높았다. 이와 같은 현상은 의료용 선형가속기의 전자선 방출구에 장착된 산란판과 조사면을 조정하는 cone에 의하여 발생되는 저 에너지 산란전자선이 alanine dosimeter에 측정된 것으로서 에너지가 증가될수록 오염 정도가 증가되었다. 본 실험을 통하여 지금까지 고에너지 전자선량계측에서 전리상에 의한 전기량 측정과 산란선이 없는 단일 에너지로만 간주하여 계산하였던 전자선 흡수선량 측정방법을 직접 흡수선량 측정이 가능한 Alanine/ESR dosimetry로서 교정하는 것이 바람직하다고 생각한다.

  • PDF

Synthesis of Chiral Poly(norbornene carboxylic acid ester)s and Their Characteristic Properties in The Thin Film

  • Byun, Gwang-Su;Lee, Taek-Joon;Jin, Kyeong-Sik;Ree, Moon-Hor;Kim, Sang-Youl;Cho, I-Whan
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.333-333
    • /
    • 2006
  • We synthesized two novel polynorbornene derivatives, chiral poly(norbornene acid methyl ester) (C-PNME) and racemic poly(norbornene acid n-butyl ester) (R-PNME), which are potential low dielectric constant materials for applications in advanced microelectronic and display devices. Thin films of these polymers deposited on substrates were investigated by structural analyses using synchrotron grazing incidence X-ray scattering, specular reflectivity and ellipsometry. These analyses provided important information on the structure, electron density gradient across film thickness, chain orientation, refractive index and thermal expansion of the polymers in substrate-supported thin films. The structural characteristics and properties of the thin films were first dependent on the polymer chain' tacticity and further influenced by film thickness and thermal annealing.

  • PDF

Inactivation of Agrobacterium tumefaciens Inoculated on Fresh Radix Ginseng by Electron Beam Irradiation and Aqueous Chlorine Dioxide Treatment

  • Chun, Ho-Hyun;Kim, Ju-Yeon;Song, Kyung-Bin
    • Journal of Applied Biological Chemistry
    • /
    • 제51권3호
    • /
    • pp.117-122
    • /
    • 2008
  • Inactivation of Agrobacterium tumefaciens was evaluated on the inoculated fresh Radix Ginseng by electron beam irradiation or aqueous chlorine dioxide ($ClO_2$) treatment. Two groups of fresh ginsengs were prepared and inoculated with A. tumefaciens. One group was then irradiated at 0, 2, and 4 kGy using an electron beam accelerator, and the other group was treated with 0, 50, and 100 ppm of aqueous $ClO_2$. Microbiological data indicated that populations of A. tumefaciens significantly decreased with increasing irradiation dose or aqueous $ClO_2$ concentration. In particular, A. tumefaciens was eliminated by irradiation at 4 kGy, and 100 ppm $ClO_2$ treatment reduced the populations of A. tumefaciens by 1.44 log CFU/g. These results suggest that electron beam irradiation or aqueous $ClO_2$ treatment can be useful in improving the microbial safety of fresh ginsengs during storage.

치료용 광자선의 전자오염에 대한 몬테카를로 시뮬레이션 (Monte Carlo Simulation for Electron Contamination of Photon Beam)

  • 정갑수;고신관;양한준;한창열
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제22권2호
    • /
    • pp.47-51
    • /
    • 1999
  • We calculated the energy distribution and the percentage depth-dose at 10 cm in a $10{\times}10\;cm^2$ with a photon beam at SSD of 100 cm by using a Monte Carlo Simulation. PDD is used as a beam-quality specifier for radiotherapy beams. It is better than the commonly used values of TPR or nominal accelerating potential. The presence of electron contamination affects the measurement of PDD, but can be removed by the use of a 0.1 cm lead filter. It reduces surface dose from contaminant electrons from the accelerator by more than 90% for radiotherapy beams. The filter performs best when it is placed immediately below the head. An electron-contamination correction factor is introduced to correct for electron contamination from the filter and air. It converts PDD which includes the electron contamination with the filter in place into PDD for the photons in the filtered beam. The correction factor can be used to determine stopping-power ratio. Calculations show that the values of water-to-air slopping power ratio in the unfiltered beam are related to PDD.

  • PDF

Electron Energy Distribution for a Research Electron LINAC

  • Lim, Heuijin;Lee, Manwoo;Yi, Jungyu;Kang, Sang Koo;Kim, Me Young;Jeong, Dong Hyeok
    • 한국의학물리학회지:의학물리
    • /
    • 제28권2호
    • /
    • pp.49-53
    • /
    • 2017
  • The energy distribution was calculated for an electron beam from an electron linear accelerator developed for medical applications using computational methods. The depth dose data for monoenergetic electrons from 0.1 MeV to 8.0 MeV were calculated by the DOSXYZ/nrc code. The calculated data were used to generate the energy distribution from the measured depth dose data by numerical iterations. The measured data in a previous work and an in-house computer program were used for the generation of energy distribution. As results, the mean energy and most probable energy of the energy distribution were 5.7 MeV and 6.2 MeV, respectively. These two values agreed with those determined by the IAEA dosimetry protocol using the measured depth dose.

전자선을 이용한 하수처리장 방류수내 대장균군 살균 (Disinfection of Total Coliforms in Sewage Treatment Effluent using Electron Beam)

  • 김유리;한범수;김진규;강호
    • 한국물환경학회지
    • /
    • 제20권4호
    • /
    • pp.376-381
    • /
    • 2004
  • The use of electron beam irradiation was investigated to disinfect total coliforms in the secondary sewage treatment effluent. Unchlorinated secondary effluent was irradiated at different dose of 0.2~1.0 kGy by 1 MeV, ELV-4 Model electron beam accelerator. It is interesting to note that a 100 % reduction in total coliforms and total colonies were achieved until a dose of approximately 0.8 kGy. Even at low dose of 0.2 kGy, the total coliforms and total colonies were successfully inactivated to the level of satisfying the new effluent discharge guideline. Besides disinfection of total coliforms, approximately a 50% removal in biochemical oxygen demand was pronounced at a dose of 0.2 kGy. More than 20 % removal in suspended solids and turbidity was also observed at a dose of 1.0 kGy. The application of electron beam irradiation appeared to be one of options to reuse sewage treatment effluent as agricultural or industrial water.

6 MeV 전자선의 물팬텀 속의 선량분포에 관한 모의계산 (The Simulation on Dose Distributions of the 6 MeV Electron Beam in Water Phantom)

  • 이정옥;정동혁;문성록
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제23권2호
    • /
    • pp.75-79
    • /
    • 2000
  • This study was performed for the clinical applications applying the Monte Carlo methods. In this study we calculated the absorbed dose distributions for the 6 MeV electron beam in water phantom and compared the results with measured values. The energy data of electron beam used in Monte Carlo calculation is the energy distribution for 6 MeV electron beam which is assumed as a Gaussian form. We calculated percent depth doses and beam profiles for three field sizes of $10{\times}10,\;15{\times}15$, and $20{\times}20\;cm^2$ in water phantom using Monte Carlo methods and measured those data using a semiconductor detector and other devices. We found that the calculated percent depth doses and beam profiles agree with the measured values approximately. However, the calculated beam profiles at the edge of the fields were estimated to be lower than the measured values. The reason for that result is that we did not consider the angular distributions of the electrons in phantom surface and contamination of X-rays in our calculations. In conclusion, in order to apply the Monte Carlo methods to the clinical calculations we are to study the source models for electron beam of the linear accelerator beforehand.

  • PDF

ML-15MDX 술중조사용 Applicator에 의한 전자선선량 특성 (Dose Characteristics for IORT Applicator of ML-15MDX Electron Beam)

  • 최태진;이호준;김영애;김진희;김옥배
    • Radiation Oncology Journal
    • /
    • 제11권2호
    • /
    • pp.455-461
    • /
    • 1993
  • Experimental measurements of dose characteristics with pentagonal applicator at nominal energy of 4, 6, 9, 12 and 15 MeV electron beam were performed for intraoperative radiotherapy (IORT) in ML-15MDX linear accelerator. This paper presents the percent depth dose, surface dose, beam flatness and output factors of using the IORT applicator in different electron beam energy. The output factor showed as a 24 percent higher in IORT applicator than that of reference $10{\times}10cm^2$ applicator. The surface dose of using the IORT applicator showed 7.7 and 2.7 percent higher than that of reference field in 4 and 15 MeV electron beam, respectively. In our experiments, the variation of percent depth dose was very small but the output factor and flatnees at 0.5 cm depth have showed a large value in IORT applicator.

  • PDF

Dose Effect of Phytosanitary Irradiation on the Postharvest Quality of Cut Flowers

  • Kwon, Song;Kwon, Hye Jin;Ryu, Ju Hyun;Kim, Yu Ri
    • 인간식물환경학회지
    • /
    • 제23권2호
    • /
    • pp.171-178
    • /
    • 2020
  • The present study was conducted to determine the effects of electron beam irradiation on the postharvest quality of cut flowers. Cut flowers were irradiated with electron beam at 100, 200, 400, 600, 800, 1,000, and 2,000 Gy with a 10 MeV linear electron beam accelerator to evaluate their irradiation tolerance. Postharvest quality was determined by monitoring fresh weight loss, flower longevity, flower diameter, flowering rate, visual quality of flowers and leaves, and chlorophyll content. Cut flowers showed a radiation-induced damage with increasing the irradiation dose. Flower longevity and fresh weight of cut flowers decreased when the irradiation dose was increased. Flower bud opening was also inhibited in a dose-dependent manner. The effective irradiation doses for 10% reduction of postharvest quality (ED10) values were 144.4, 451.6, and 841.2 Gy in the 'Medusa' lily, 'Montezuma' carnation, and 'Rosina White' eustoma, respectively. Although tolerance of cut flowers to electron beam irradiation vary according to species, cultivars, or maturity stage conditions, it is conceivable that 'Montezuma' carnation and 'Rosina White' eustoma could be tolerated and maintained overall postharvest quality up to 400 Gy, the generic irradiation dose approved by the Animal and Plant Health Inspection Service (APHIS) and the International Plant Protection Convention (IPPC) for postharvest phytosanitary treatments.

Electron Trapping and Transport in Poly(tetraphenyl)silole Siloxane of Quantum Well Structure

  • Choi, Jin-Kyu;Jang, Seung-Hyun;Kim, Ki-Jeong;Sohn, Hong-Lae;Jeong, Hyun-Dam
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.158-158
    • /
    • 2012
  • A new kind of organic-inorganic hybrid polymer, poly(tetraphenyl)silole siloxane (PSS), was invented and synthesized for realization of its unique charge trap properties. The organic portions consisting of (tetraphenyl)silole rings are responsible for electron trapping owing to their low-lying LUMO, while the Si-O-Si inorganic linkages of high HOMO-LUMO gap provide the intrachain energy barrier for controlling electron transport. Such an alternation of the organic and inorganic moieties in a polymer may give an interesting quantum well electronic structure in a molecule. The PSS thin film was fabricated by spin-coating of the PSS solution in THF organic solvent onto Si-wafer substrates and curing. The electron trapping of the PSS thin films was confirmed by the capacitance-voltage (C-V) measurements performed within the metal-insulator-semiconductor (MIS) device structure. And the quantum well electronic structure of the PSS thin film, which was thought to be the origin of the electron trapping, was investigated by a combination of theoretical and experimental methods: density functional theory (DFT) calculations in Gaussian03 package and spectroscopic techniques such as near edge X-ray absorption fine structure spectroscopy (NEXAFS) and photoemission spectroscopy (PES). The electron trapping properties of the PSS thin film of quantum well structure are closely related to intra- and inter-polymer chain electron transports. Among them, the intra-chain electron transport was theoretically studied using the Atomistix Toolkit (ATK) software based on the non-equilibrium Green's function (NEGF) method in conjunction with the DFT.

  • PDF