• Title/Summary/Keyword: Electron acceleration

Search Result 133, Processing Time 0.03 seconds

A Study on the Optimum Design of the Condenser Lens of a Compact Electrostatic-Type SEM (전기장형 소형 주사전자현미경의 집속렌즈의 최적 설계에 대한 연구)

  • Kim, Ki-Hwan;Jang, Dong-Young;Park, Man-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.270-277
    • /
    • 2015
  • In this paper, we describe the production of a specific electrostatic-type scanning electron microscope based on miniaturization for application in other types of vacuum equipment. The initial configuration of the SEM starts with a minimal configuration that allows people to view sample images. After improving the stability of the SEM operation and resolution, we conducted experiments on identifying the characteristics and development of an einzel-type condenser lens with reference to the demagnification lens system of an SEM. The experiments were conducted at an acceleration voltage of 5 kV and we found the shape of the lens to be more reliable than a conventional lens. The lens was then added to improve the resolution in the nanometer region. The current measured on the sample was approximately 40 pA and its magnification was 4,000 times.

Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field

  • Lee, Jeongwoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.211-218
    • /
    • 2018
  • Solar microwave bursts carry information about the magnetic field in the emitting region as well as about electrons accelerated during solar flares. While this sensitivity to the coronal magnetic field must be a unique advantage of solar microwave burst observations, it also adds a complexity to spectral analysis targeted to electron diagnostics. This paper introduces a new spectral analysis procedure in which the cross-section and thickness of a microwave source are expressed as power-law functions of the magnetic field so that the degree of magnetic inhomogeneity can systematically be derived. We applied this spectral analysis tool to two contrasting events observed by the Owens Valley Solar Array: the SOL2003-04-04T20:55 flare with a steep microwave spectrum and the SOL2003-10-19T16:50 flare with a broader spectrum. Our analysis shows that the strong flare with the broader microwave spectrum occurred in a region of highly inhomogeneous magnetic field and vice versa. We further demonstrate that such source properties are consistent with the magnetic field observations from the Michelson Doppler Imager instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft and the extreme ultraviolet imaging observations from the SOHO extreme ultraviolet imaging telescope. This spectral inversion tool is particularly useful for analyzing microwave flux spectra of strong flares from magnetically complex systems.

TOWARD NEXT GENERATION SOLAR CORONAGRAPH: DEVELOPMENT OF COMPACT DIAGNOSTIC CORONAGRAPH ON ISS

  • Cho, Kyungsuk;Bong, Suchan;Choi, Seonghwan;Yang, Heesu;Kim, Jihun;Baek, Jihye;Park, Jongyeob;Lim, Eun-Kyung;Kim, Rok-Soon;Kim, Sujin;Kim, Yeon-Han;Park, Young-Deuk;Clarke, S.W.;Davila, J.M.;Gopalswamy, N.;Nakariakov, V.M.;Li, B.;Pinto, R.F.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.66.2-66.2
    • /
    • 2017
  • The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administrative (NASA) and install it on the International Space Station (ISS). The coronagraph is an externally occulted one stage coronagraph with a field of view from 2.5 to 15 solar radii. The observation wavelength is approximately 400 nm where strong Fraunhofer absorption lines from the photosphere are scattered by coronal electrons. Photometric filter observation around this band enables the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with the high time cadence (< 12 min) of corona images to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in 2017 August for the filter system and to perform a stratospheric balloon experiment in 2019 for the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g. coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.

  • PDF

A Study on the Stability of the Accelerating Voltages in Scanning Electron Microscopy (주사전자현미경에서 가속전압의 안정성 연구)

  • Bae, Moon-Seob;Oh, Sang-Ho;Cho, Yang-Koo;Lee, Hwack-Joo
    • Applied Microscopy
    • /
    • v.34 no.1
    • /
    • pp.51-59
    • /
    • 2004
  • The high acceleration voltage system used in scanning electron microscope were designed and manufactured to test its stability. The Cockcroft-Walton circuits are used both in the cathode voltage up to -30 kV and in the Wehnelt cylinder of -2 kV. The operating voltage of 6 V was applied to the heating of the filament. The wave forms which are formed in the second leg of the high voltage transformer were observed in the oscilloscope with 2 V of DC input. When the high voltages were in the range between 5 kV and 12 kV, the highest value of the stabilities of the generated voltages was obtained as 0.002%.

Design study of the Vacuum system for RAON accelerator using MonteCarlo method

  • Kim, Jae-Hong;Jeon, Dong-O
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.70.1-70.1
    • /
    • 2015
  • The facility for RAON superconducting heavy-ion accelerator at a beam power of up to 400 kW will be produced rare isotopes with two electron cyclotron resonance (ECR) ion sources. Highly charged ions generated by the ECR ion source will be injected to a superconducting LINAC to accelerate them up to 200 MeV/u. During the acceleration of the heavy ions, a good vacuum system is required to avoid beam loss due to interaction with residual gases. Therefore ultra-high vacuum (UHV) is required to (i) limit beam losses, (ii) keep the radiation induced within safe levels, and (iii) prevent contamination of superconducting cavities by residual gas. In this work, a RAON vacuum design for all the accelerator system will be presented along with Monte Carlo simulation of vacuum levels in order to validate the vacuum hardware configuration, which is needed to meet the baseline requirements.

  • PDF

PROPERTIES OF THE CRYSTALLINE POLYIMIDE FILM DEPOSITED BY IONIZED CLUSTER BEAM

  • Whang, Chung-Nam
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05a
    • /
    • pp.6-6
    • /
    • 1992
  • Ionized cluster beam deposition (ICBD) technique has been employed to fabricate high-purity crystalline polyimide (PI) film. The pyromellitic dianhydride (PMDA) and oxydianiline (ODA) were deposited using dual ICB sources, Fourier trans forminfraredspectroscopy (FT-IR), X-ray photoemission spectroscopy (XPS), and Transmission electron microscopy (TEM)study show that the bulk and surface chemical properties and the crystalline structure are very sensitive to the ICBD conditions such as cluster ion acceleration voltage and ionization voltage, At optimum ICBD conditions, the PI films have a maximum imidization, negligible impurities(∼1% isoimide), and a good crystalline structure probably due to the high surface migration energy and surface cleaning effect. These characteristics are superior to those of films deposited by other techniques such as colvent cast, vapowr deposition, or sputtering techniques.

  • PDF

CNTs Electric Field Enhancement of CIGS Solar Cells

  • Han, Seong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.67-67
    • /
    • 2011
  • Compound semiconductor/CNTs composites have shown considerably improved efficiency improvement in photovoltaic devices, which is often attributed to two different factors. One is the formation of efficient electronic energy cascade structures. The other effect of CNTs on the performance of photovoltaic devices is the decrement of interfacial resistance. The interfacial resistances at n-type/ p-type materials and/or n-type materials/TCO electrode are reduced by an outstanding electrical property of CNTs. In addition to the effects of CNTs, we report the third reason for increment of efficiency in photovoltaic devices by CNT's well-known electrical field enhancement effects. The improved ${\beta}$ values in reverse-FE currents of CIGS electrode with SWNTs layers indicate the enhancement of electrical field in photovoltaic devices, which implies the acceleration of the electron transfer rate in the cell. Due to the formation of an efficient electronic energy cascade structure and the decrease of the interfacial resistance as well as the improvement of the electrical field in the photovoltaic devices, the power conversion efficiency of electrochemically deposited superstrate-type CIGS solar cells was increased 24.3% in the presence of SWNTs and showed 10.40% conversion efficiency.

  • PDF

The Effect of Processing Conditions on the Gradient Pore Structure of Diatomite by Centrifugal Molding (경사 기공 구조를 가지는 규조토의 제조에 원심 분리 성형 공정 변수들이 미치는 영향)

  • Ha, Jang-Hoon;Oh, Eun-Ji;Ahmad, Rizwan;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.304-309
    • /
    • 2012
  • The purpose of our study was to develop the fabrication method of porous diatomite ceramics with a porosity gradient by centrifugal molding. The processing variables of centrifugal molding were derived from Stoke's law of sedimentation, which were the radius of the particles, the acceleration due to centrifugal molding and the dynamic viscosity of the slurry. And these could be controlled by ball-milling conditions, centrifugal conditions, and the addition of methyl cellulose, respectively. The effects of processing conditions on the gradient pore structure of diatomite were investigated by particle size analysis, scanning electron microscope, and mercury porosimeter.

Study of Weak Astrophysical Shock Waves using a PIC Code

  • Kwon, Hye-Won;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.109.1-109.1
    • /
    • 2011
  • Shock waves are ubiquitous in astrophysical environments. In particular, shocks formed by merger of subclumps, infall of matter and internal flow motion in intracluster media (ICMs) and cluster outskirts are relatively weak with Mach number M ${\lesssim}$ a few. At such weak shocks, it has been believed that the diffusive shock acceleration (DSA) of cosmic rays is rather inefficient. Yet, the presence of nonthermal phenomena, such as radio halos and relics, suggests that contrary to the expectation, DSA as well as magnetic field amplification should operate at weak shocks in cluster environments. We recently initiated a study of weak, collisionless, astrophysical shocks using a PIC(Particle-in-Cell) code. The PIC code describes the motion of electron and ion particles under the electromagnetic field which is represented in grid zones. Here, we present a preliminary work of one-dimensional simulations. We show how shocks are set up as the turbulent electromagnetic field is developed in the shock transition layer, and discuss the implication on DSA and magnetic field amplification.

  • PDF

A study on the resist characteristics of polystyrene by plasma polymerization( II ) (플라즈마 중합법에 의해 제작된 폴리스틸렌의 레지스트 특성 조사(II))

  • Jung, S.Y.;Jin, K.S.;Kim, D.Y.;Park, J.K.;Park, S.G.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1400-1402
    • /
    • 1994
  • Plasma polymerized thin films was prepared using an interelectrod inductively coupled gas-flow-type reactor. Styrene was chosen as the monomer to be used. This thin films were also delineated by the electron-beam apparatus with an acceleration voltage 30kV, and the pattern in the resist was developed with RIE 80 with argon gas mixture ratio, pressure and RF power. The molecular structure of thin films was investigated by GPC and FT-IR and then was discussed in relation to its quality as a resist. In the case of plasma polymerization, thickness of resist could be controlled by discharge duration and power. Also etch rate is increased as to growing pressure with RIE 80.

  • PDF