• Title/Summary/Keyword: Electron Monte Carlo

Search Result 235, Processing Time 0.028 seconds

The Carbon Plume Simulation by Pulsed Laser Ablation Method - Interactions between Ar plasmas and Carbon Plume - (레이져 용삭법에 의한 탄소입자 운동모델 - 플라즈마와의 상관관계 -)

  • So, Soon-Youl;Chung, Hae-Deok;Lee, Jin;Park, Gye-Choon;Park, Gye-Chun;Kim, Chang-Sun;Moon, Chae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.96-100
    • /
    • 2006
  • A pulsed laser ablation deposition (PLAD) technique is an excellent method for the fabrication of amorphous carbon (a-C) films. This paper was focused on the understanding and analysis of the motion of carbon atom (C) and carbon ion ($C^+$) particles in laser ablation assisted by Ar plasmas. The simulation has carried out under the pressure P=10~100 mTorr of Ar plasmas. Two-dimensional hybrid model consisting of fluid and Monte-Carlo models was developed and three kinds of the ablated particles which are C, $C^+$ and electron were considered in the calculation of particle method. The motions of energetic $C^+$ and C deposited upon the substrate were investigated and compared.

  • PDF

SENSITIVITY ANALYSIS TO EVALUATE THE TRANSPORT PROPERTIES OF CdZnTe DETECTORS USING ALPHA PARTICLES AND LOW-ENERGY GAMMA-RAYS

  • Kim, Kyung-O;Ahn, Woo-Sang;Kwon, Tae-Je;Kim, Soon-Young;Kim, Jong-Kyung;Ha, Jang-Ho
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.567-572
    • /
    • 2011
  • A sensitivity analysis of the methods used to evaluate the transport properties of a CdZnTe detector was performed using two different radiations (${\alpha}$ particle and gamma-ray) emitted from an $^{241}Am$ source. The mobility-lifetime products of the electron-hole pair in a planar CZT detector ($5{\times}5{\times}2\;mm^3$) were determined by fitting the peak position as a function of biased voltage data to the Hecht equation. To verify the accuracy of these products derived from ${\alpha}$ particles and low-energy gamma-rays, an energy spectrum considering the transport property of the CZT detector was simulated through a combination of the deposited energy and the charge collection efficiency at a specific position. It was found that the shaping time of the amplifier module significantly affects the determination of the (${\mu}{\tau}$) products; the ${\alpha}$ particle method was stabilized with an increase in the shaping time and was less sensitive to this change compared to when the gamma-ray method was used. In the case of the simulated energy spectrum with transport properties evaluated by the ${\alpha}$ particle method, the peak position and tail were slightly different from the measured result, whereas the energy spectrum derived from the low-energy gamma-ray was in good agreement with the experimental results. From these results, it was confirmed that low-energy gamma-rays are more useful when seeking to obtain the transport properties of carriers than ${\alpha}$ particles because the methods that use gamma-rays are less influenced by the surface condition of the CZT detector. Furthermore, the analysis system employed in this study, which was configured by a combination of Monte Carlo simulation and the Hecht model, is expected to be highly applicable to the study of the characteristics of CZT detectors.

Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications

  • Rammah, Y.S.;Tekin, H.O.;Sriwunkum, C.;Olarinoye, I.;Alalawi, Amani;Al-Buriahi, M.S.;Nutaro, T.;Tonguc, Baris T.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.282-293
    • /
    • 2021
  • This paper examines gamma-ray shielding properties of SBC-Bx glass system with the chemical composition of 40SiO2-10B2O3-xBaO-(45-x)CaO- yZnO- zMgO (where x = 0, 10, 20, 30, and 35 mol% and y = z = 6 mol%). Mass attenuation coefficient (µ/ρ) which is an essential parameter to study gamma-ray shielding properties was obtained in the photon energy range of 0.015-15 MeV using PHITS Monte Carlo code for the proposed glasses. The obtained results were compared with those calculated by WinXCOM program. Both the values of PHITS code and WinXCOM program were observed in very good agreement. The (µ/ρ values were then used to derive mean free path (MFP), electron density (Neff), effective atomic number (Zeff), and half value layer (HVL) for all the glasses involved. Additionally, G-P method was employed to estimate exposure buildup factor (EBF) for each glass in the energy range of 0.015-15 MeV up to penetration depths of 40 mfp. The results reveal that gamma-ray shielding effectiveness of the SBC-Bx glasses evolves with increasing BaO content in the glass sample. Such that SBC-B35 glass has superior shielding capacity against gamma-rays among the studied glasses. Gamma-ray shielding properties of SBC-B35 glass were compared with different conventional shielding materials, commercial glasses, and newly developed HMO glasse. Therefore, the investigated glasses have potential uses in gamma shielding applications.

Irradiation Hardening Property of Inconel 718 Alloy produced by Selective Laser Melting (Selective Laser Melting 방식으로 적층제조된 Inconel 718 합금의 조사 경화 특성)

  • Joowon Suh;Sangyeob Lim;Hyung-Ha Jin;Young-Bum Chun;Suk Hoon Kang;Heung Nam Han
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.431-435
    • /
    • 2023
  • An irradiation hardening of Inconel 718 produced by selective laser melting (SLM) was studied based on the microstructural observation and mechanical behavior. Ion irradiation for emulating neutron irradiation has been proposed owing to advantages such as low radiation emission and short experimental periods. To prevent softening caused by the dissolution of γ' and γ" precipitates due to irradiation, only solution annealing (SA) was performed. SLM SA Inconel 718 specimen was ion irradiated to demonstrate the difference in microstructure and mechanical properties between the irradiated and non-irradiated specimens. After exposing specimens to Fe3+ ions irradiation up to 100 dpa (displacement per atom) at an ambient temperature, the hardness of irradiated specimens was measured by nano-indentation as a function of depth. The depth distribution profile of Fe3+ and dpa were calculated by the Monte Carlo SRIM (Stopping and Range of Ions in Matter)-2013 code under the assumption of the displacement threshold energy of 40 eV. A transmission electron microscope was utilized to observe the formation of irradiation defects such as dislocation loops. This study reveals that the Frank partial dislocation loops induce irradiation hardening of SLM SA Inconel 718 specimens.

Impact of 0.35 T Magnetic Field on Dose Calculation for Non-small Cell Lung Cancer Stereotactic Radiotherapy Plans

  • Jaeman Son;Sung Young Lee;Chang Heon Choi;Jong Min Park;Jung-in Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.117-123
    • /
    • 2023
  • Background: We investigated the impact of 0.35 T magnetic field on dose calculation for non-small cell lung cancer (NSCLC) stereotactic ablative radiotherapy (SABR) in the ViewRay system (ViewRay Inc.), which features a simultaneous use of magnetic resonance imaging (MRI) to guide radiotherapy for an improved targeting of tumors. Materials and Methods: Here, we present a comprehensive analysis of the effects induced by the 0.35 T magnetic field on various characteristics of SABR plans including the plan qualities and dose calculation for the planning target volume, organs at risk, and outer/inner shells. Therefore, two SABR plans were set up, one with a 0.35 T magnetic field applied during radiotherapy and another in the absence of the field. The dosimetric parameters were calculated in both cases, and the plan quality indices were evaluated using a Monte Carlo algorithm based on a treatment planning system. Results and Discussion: Our findings showed no significant impact on dose calculation under the 0.35 T magnetic field for all analyzed parameters. Nonetheless, a significant enhancement in the dose was calculated on the skin surrounding the tumor when the 0.35 T magnetic field was applied during the radiotherapy. This was attributed to the electron return effect, which results from the deviation of the electrons ejected from tissues upon radiation due to Lorentz forces. These returned electrons re-enter the tissues, causing a local dose increase in the calculated dose. Conclusion: The present study highlights the impact of the 0.35 T magnetic field used for MRI in the ViewRay system for NSCLC SABR treatment, especially on the skin surrounding the tumors.

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

Monte Carlo Study Using GEANT4 of Cyberknife Stereotactic Radiosurgery System (GEANT4를 이용한 정위적 사이버나이프 선량분포의 계산과 측정에 관한 연구)

  • Lee, Chung-Il;Shin, Jae-Won;Shin, Hun-Joo;Jung, Jae-Yong;Kim, Yon-Lae;Min, Jeong-Hwan;Hong, Seung-Woo;Chung, Su-Mi;Jung, Won-Gyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.192-200
    • /
    • 2010
  • Cyberknife with small field size is more difficult and complex for dosimetry compared with conventional radiotherapy due to electronic disequilibrium, steep dose gradients and spectrum change of photons and electrons. The purpose of this study demonstrate the usefulness of Geant4 as verification tool of measurement dose for delivering accurate dose by comparing measurement data using the diode detector with results by Geant4 simulation. The development of Monte Carlo Model for Cyberknife was done through the two-step process. In the first step, the treatment head was simulated and Bremsstrahlung spectrum was calculated. Secondly, percent depth dose (PDD) was calculated for six cones with different size, i.e., 5 mm, 10 mm, 20 mm, 30 mm, 50 mm and 60 mm in the model of water phantom. The relative output factor was calculated about 12 fields from 5 mm to 60 mm and then it compared with measurement data by the diode detector. The beam profiles and depth profiles were calculated about different six cones and about each depth of 1.5 cm, 10 cm and 20 cm, respectively. The results about PDD were shown the error the less than 2% which means acceptable in clinical setting. For comparison of relative output factors, the difference was less than 3% in the cones lager than 7.5 mm. However, there was the difference of 6.91% in the 5 mm cone. Although beam profiles were shown the difference less than 2% in the cones larger than 20 mm, there was the error less than 3.5% in the cones smaller than 20 mm. From results, we could demonstrate the usefulness of Geant4 as dose verification tool.

Evaluation of Attenuation Rate Error on Skin Dosimeter using Monte Carlo Simulation in Photon and Electron Beam Therapy (광자선 및 전자선 치료에서 피부선량계의 측정과 시뮬레이션을 이용한 감약률 오차 평가)

  • Han, Moo-Jae;Yang, Seung-Woo;Heo, Seung-Uk;Bae, Sang-Il;Moon, Young-Min;Park, Sung-Kwang;Kim, Jin-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.841-848
    • /
    • 2020
  • In the field of radiation therapy using photon beams and electron beams, since each patient has a different sensitivity to radiation, skin side effects may occur even at the same dose. Therefore, if there is a risk of excessive dose to the skin, a dosimeter is attached to verify whether the correct dose is being investigated. However, since the skin dosimeter checks the attachment site visually by measuring a point dose, it is difficult to confirm an accurate dose distribution. As a result, the measurement and simulation errors of the material HgI2 in the 6 MV photon beam were 3.73% and 5.24%, respectively, at the minimum thickness of 25 ㎛, and the material PbI2 was 4.73% and 5.65%, respectively. On the other hand, as a result of the 6 MeV electron beam, the measurement and simulation errors of the material HgI2 were 1.35% and 1.12%, respectively, at a minimum thickness of 25 ㎛, and the material PbI2 showed relatively low attenuation error, 1.67% and 1.20%, respectively. Therefore, it was evaluated that the thickness of the photon beam within 25 ㎛ and the electron beam within 100 ㎛ is suitable to have a reduction rate error within 5%. This study presents a new research direction for a flexible dosimeter attached to the human body that is required in clinical practice and the construction conditions of a future skin dosimeter.

Chamber to Chamber Variations of a Cylindrical Ionization Chamber for the Calibration of an $^{192}Ir$ Brachytherapy Source Based on an Absorbed Dose to Water Standards (물흡수선량 표준에 기반한 $^{192}Ir$ 근접치료 선원 교정 시 원통형 이온함의 이온함 간 변화)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Kim, Chan-Hyeong;Min, Chul-Hee;Shin, Dong-Oh;Choi, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • This work is for the preliminary study for the calibration of an $^{192}Ir$ brachytherapy source based on an absorbed dose to water standards. In order to calibrate brachytherapy sources based on absorbed dose to water standards using a clyndirical ionization chamber, the beam quality correction factor $k_{Q,Q_0}$ is needed. In this study $k_{Q,Q_0}s$ were determined by both Monte carlo simulation and semiexperimental methods because of the realistic difficulties to use primary standards to measure an absolute dose at a specified distance. The 5 different serial numbers of the PTW30013 chamber type were selected for this study. While chamber to chamber variations ran up to maximum 4.0% with the generic $k^{gen}_{Q,Q_0}$, the chamber to chamber variations were within a maximum deviation of 0.5% with the individual $k^{ind}_{Q,Q_0}$. The results show why and how important ionization chambers must be calibrated individually for the calibration of $^{192}Ir$ brachytherapy sources based on absorbed dose to water standards. We hope that in the near future users will be able to calibrate the brachytherapy sources in terms of an absorbed dose to water, the quantity of interest in the treatment, instead of an air kerma strength just as the calibration in the high energy photon and electron beam.

  • PDF

The Study on Design of lead monoxide based radiation detector for Checking the Position of a Radioactive Source in an NDT (비파괴검사 분야에서 방사선원의 위치 확인을 위한 산화납 기반 방사선 검출기 설계에 관한 연구)

  • Ahn, Ki-Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.183-188
    • /
    • 2017
  • In recent years, the automatic remote control controller of the gamma ray irradiator malfunctions, and radiation workers are continuously exposed to radiation exposure accidents. In the non-destructive testing field, much time and resources are invested in establishing a radioactive source monitoring system in order to prevent potential incidents of radiation. In this study, the gamma-ray response properties of the lead monoxide-based radiation detector were estimated through monte carlo simulation as a previous study for the development of a radioactive source location monitoring system that can be applied universally to various non-destructive testing equipment. As a result of the study, the optimized thickness of the radiation detector varies according to the gamma-ray energy emitted from the radioactive source, and the optimized thickness gradually increases with increasing energy. In conclusion, the optimized thickness of the lead monoxide-based radiation detector was $200{\mu}m$ for the Ir-192, $150{\mu}m$ for the Se-75 and $300{\mu}m$ for the Co-60. Based on these results, the appropriate thickness of lead monoxide-based radiation detector considering secondary-electron equilibrium was evaluated to be $300{\mu}m$ for general application. These results can be used as a basic data for determining the appropriate thickness required in the radiation detector when developing a radiation source location monitoring system for universal application to various non-destructive testing equipment in the future.