• Title/Summary/Keyword: Electron Detector

Search Result 264, Processing Time 0.043 seconds

A Study on the Secondary Electron Detector for use in Scanning Electron Microscope (SEM용 전자 검출기의 설계 및 제작)

  • Lee SangUk;Jeon Jong Up;Park KiTae;Park Kyu Yeol
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.9-14
    • /
    • 2005
  • The nature of the signals collected by an SEM(Scanning Electron Microscope) in order to form images are all dependent on the detector used to collect them, and the quality of an acquired image is strongly influenced by detector performance. Therefore, the development of detector with high performance is very important in pulling up the resolution of SEM This study presents the secondary electron detector for use in scanning electron microscope, electric circuit and I/V conversion circuit for driving that detector.

  • PDF

Design and Manufacture of an Electron Detector for Scanning Electron Microscope (주사전자현미경용 전자검출기의 설계 및 제작)

  • Jeon, Jong-Up;Kim, Ji-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.53-60
    • /
    • 2008
  • Electron detectors used in scanning electron microscope accept electrons emitted from the specimen and convert them to an electrical signal that, after amplification, is used to modulate the gray-level intensities on a cathode ray tube, producing an image of the specimen. Electron detector is one of the key components dominating the performance of scanning electron microscope so that the development of electron detectors having high performance is indispensable to acquire high quality images using scanning electron microscope. In this paper, we designed and manufactured an electron detector and conducted a couple of image capture experiments using it. In particular, scintillator which generates light photons when it is struck by high-energy electrons was manufactured and experimental studies on the optimization of manufacturing condition was carried out. From experiments to evaluate the performance of our detector, it was verified that the performance of our detector is equivalent to or better than that of the conventional one.

The Electron Detector in Scanning Electron Microscope (주사전자현미경용 전자검출기)

  • 이상욱;전종업;한상훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.513-517
    • /
    • 2004
  • The nature of the signals collected by an SEM(Scanning Electron Microscope) in order to form images are all dependent on the detector used to collect them, and the quality of an acquired image is strongly influenced by detector performance. Therefore, the development of detector with high performance is very important in pulling up the resolution of SEM. In this article, electron beam-specimen interactions, the detection principle of secondary electrons and backscattered electrons, and the structure of a conventional detector are described. The structure of an experimental apparatus for the future study on our hopeful novel electron detector is presented as well.

  • PDF

Manufacture and Performance Estimation of Electron Detector for SEM (SEM용 전자검출기의 제작 및 성능평가)

  • Kim, Ji-Won;Jeon, Jong-Up;Boo, Kyeung-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1282-1287
    • /
    • 2007
  • The nature of the signal collected by an SEM(Scanning Electron Microscope) in order to form images are all dependent on the detector used to collect them, and the quality of an acquired images is strongly influenced by detector performance. Therefore, the development of detector with high performance is very important for improving on the resolution of SEM. This paper presents the manufacture of secondary electron detector and the optimal position of electron detector through numerical analysis in SEM.

  • PDF

The Behavior of Secondary Electrons and Optimal Mounting Position of a Secondary Electron Detector in SEM with a Numerical Analysis (수치해석을 통한 SEM 챔버내의 이차전자 거동해석 및 이차전자 검출기의 최적 장착 위치 선정)

  • Boo, Kyeung-Seok;Jeon, Jong-Up
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.15-21
    • /
    • 2008
  • Secondary electron detectors used in scanning electron microscope accept secondary electrons emitted from the specimen and convert them to an electrical signal that, after amplification, is used to modulate the gray-level intensities on a cathode ray tube, producing an image of the specimen. In order to acquire images with good qualities, as many secondary electrons as possible should be reached to the detector. To realize this it is very important to select an appropriate mounting position and angle of the detector inside the chamber of scanning electron microscope. In this paper, a number of numerical simulations are performed to explore the relationships between detection rates of secondary electrons and the values of some parameters, such as distances between the detector and sample, relative mounting positions of scintillator positioned inside the detector with respect to detector cover, two types of mounting angles of the detector. The relationships between detection rates and applied voltages to corona ring and faraday cage, and energies of secondary electrons are investigated as well.

A Study on image noise removal of $2^{nd}$ electron detector for a E-Beam Lithography (전자빔 가공기를 위한 2 차 전자 검출기의 영상 노이즈 제거에 관한 연구)

  • Im Y.B.;Moon H.M.;Joe H.T.;Paek Y.J.;Lee C.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1741-1744
    • /
    • 2005
  • The electron beam machining provides very high resolution up to nanometer scale, hence the E-Beam writing technology is rapidly growing in MEMS and nano-engineering areas. For E-Beam machining, $2^{nd}$ electron detector is required to see a machined sample at the stage. The $2^{nd}$ electron detector is composed of scintillator and photomultiplier with signal amplifier and high voltage power supplier. Since a photomultiplier tube is an extremely high-sensitivity photodetector, the signal light level to be detected is very low and therefore particular care must be exercised in shielding external light. In this paper, the design methodology of $2^{nd}$ electron detector and the image noise removal method are introduced.

  • PDF

The study on the analysis of α-naphthylamine in urine (요중 알파나프틸아민 분석에 관한 연구)

  • kim, Choon Sung;Roh, Jae Hoon;Bae, Mun Joo;Kim, Chi Nyon;Lim, Nam Gu;Won, Jong Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.1
    • /
    • pp.49-59
    • /
    • 1997
  • This study was performed to analyze the purity of technical grade ${\alpha}$-naphthylamine, to establish optimal analytical condition of ${\alpha}$-naphthylamine in urine and to determine the urine sample of workers exposed to ${\alpha}$-naphthylamine. The purity of technical grade ${\alpha}$-naphthylamine were $96.5{\pm}2.38%$, $94.1{\pm}0.97%$, $97.0{\pm}0.02%$ by gas chromatography-mass selective detector. To analyze ${\alpha}$-naphthylamine in urine, high performance liquid chromatography-electrochemical detector and gas chromatography-electron capture detector operating conditions have been optimized by preliminary expriment. In high performance liquid chromatography-electrochemical detector, the mobile phase was consisted of acetonitrile(35%) and water(65%), and the flow rate was maintained at 1.0ml per minute. Optimal detective condition was 9.0V(10nA/V) of electrochemical detector. The recovery of sep-pak treatment method was highly estimated as pretreatment of ${\alpha}$-naphthylamine in urine. The free amine was isolated by gas chromatography-electron capture detector after basic hydrosis, sep-pak treatment, toluene elution and HFBA(heptafluoro-butyric anhydride) derivatization of urine. The recovery of ${\alpha}$-naphthylamine in urine was $98.73{\pm}3.29%$ by gas chromatography-electron capture detector. The sensitivity was more higher than that of high performance liquid chromatography-electrochemical detector. Urinary ${\alpha}$-naphthylamine was detected in only one worker among nine workers. The level of ${\alpha}$-naphthylamine in urine was 6.42 ng/ml.

  • PDF

Design of the Low Energy Electron Detector for DITSAT-B

  • Park, Young-Wan-;Min, Kyoung-Wook
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.10a
    • /
    • pp.22-22
    • /
    • 1993
  • We developed the low energy electron detector (LEED) for KITSAT-B which was launched on September 26, 1998. The sensor head is mounted on the top of the satellite so that it can measure the precipitating electron flux along the Magnetic field line in the auroral zone at 820 km altitude. The detector system is composed of 4 parts : the electrostatic analyzer, the spira10on detector, the discriminator / Preamplifier, and the interface to the spacecraft. The analyzer limits the access to the spiraltron only to the electrons of certain energies which are determined by the electrostatic field across the two coaxial cylindrical analyzer plates. The energy spectrum of the detector in consideration is about 100 eV to 6.7 KeV, which is swept in 1.6 seconds and divided into 16 bins. It 81so is 1.6 second reset period after each swept, We will discuss the technical features of the system as well as the future observational schedule.

  • PDF

Search for Dark Photon in e+e- → A'A' Using Future Collider Experiments

  • Kihong Park;Kyungho Kim;Alexei Sytov;Kihyeon Cho
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.259-266
    • /
    • 2023
  • The Standard Model (SM) does not provide an information for 26% of dark matter of the universe. In the dark sector, dark matter is supposed to be linked with the hypothetical particles called dark photons that have similar role to photons in electromagnetic interaction in the SM. Besides astronomical observation, there are studies to find dark matter candidates using accelerators. In this paper, we searched for dark photons using future electron-positron colliders, including Circular Electron Positron Collider (CEPC)/CEPC, Future Circular Collider (FCC-ee)/Innovative Detector for Electron-positron Accelerator (IDEA), and International Linear Collider (ILC)/International Large Detector (ILD). Using the parameterized response of the detector simulation of Delphes, we studied the sensitivity of a double dark photon mode at each accelerator/detector. The signal mode is double dark photon decay channel, e+e- → A'A', where A' (dark photon with spin 1) decaying into a muon pair. We used MadGraph5 to generate Monte Carlo (MC) events by means of a Simplified Model. We found the dark photon mass at which the cross-sections were the highest for each accelerator to obtain the maximum number of events. In this paper we show the expected number of dark photon signal events and the detector efficiency of each accelerator. The results of this study can facilitate in the dark photon search by future electron-positron accelerators.

Applicability of Using GC-PDD (Pulsed Discharge Detector) for Multiresidual Pesticides Analysis

  • Oh, Chang-Hwan
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.959-966
    • /
    • 2006
  • The electron-capture detector (ECD) of gas chromatographs (GC) has been used widely in pesticide analysis. However, as ECD relies on radioactive material, it is troublesome to purchase and maintain. Therefore, potent replacements for ECD were investigated. A Pulsed-discharge detector (PDD) for ECD was tested and the analytical results of PDD (ECD mode), ${\mu}ECD$, and nitrogen-phosphorus detector (NPD) were compared for 107 pesticides including organochroline, organophosphorus, pyrethroids etc. The number of pesticides identified at the lowest limit of detection (LOD) was 36, 29, and 2 for PDD, ${\mu}ECD$, and NPD, respectively. The remaining pesticides showed same response to PDD and ${\mu}ECD$. The GC-PDD analysis of pesticides spiked into representative agricultural products (brown rice, spinach, and mandarin oranges) also showed good and/or equivalent recoveries using $GC-{\mu}ECD$.