• Title/Summary/Keyword: Electromotive force (EMF)

Search Result 76, Processing Time 0.024 seconds

Analysis of Electromotive Force Characteristics for Electromagnetic Energy Harvester using Ferrofluid

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.252-257
    • /
    • 2015
  • This paper investigates the concept and implementation of an energy harvesting device using a ferrofluid sloshing movement to generate an electromotive force (EMF). Ferrofluids are often applied to energy harvesting devices because they have both magnetic properties and fluidity, and they behave similarly to a soft ferromagnetic substance. In addition, a ferrofluid can change its shape freely and generate an EMF from small vibrations. The existing energy harvesting techniques, for example those using piezoelectric and thermoelectric devices, generate minimal electric power, as low as a few micro-watts. Through flow analysis of ferrofluids and examination of the magnetic circuit characteristics of the resultant electromagnetic system, an energy harvester model based on an electromagnetic field generated by a ferrofluid is developed and proposed. The feasibility of the proposed scheme is demonstrated and its EMF characteristics are discussed based on experimental data.

A Study on Characteristic Analysis of Shaft Electromotive Force in SAEYUDAL (새유달호 축기전력의 특성 분석에 관한 연구)

  • Ahn, Byong-Won;Im, Myeong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.28-31
    • /
    • 2015
  • Electromotive forces (EMF) are generated by electrical equipment and engine shafting with a number of reasons. The shaft and bearing which is insulated by lubricating oil acts as a condenser, being able to store this EMFs. The electromotive force on the hull and shaft, with very few exceptions, has anode voltage on it. Electrical spark of the anode voltage on the shaft may lead to corrosion. Hence, in order to prevent ship's shaft and propeller corrosion, shaft grounding system are installed and operated. The shaft EMF voltage measurement methods was measured using 24bit 2 channels A/D converter of NI company and Labview software. 1 channel was propeller shaft's voltage and the other was M/E engine rpm gauge. In this paper, the generated electromotive force was analyzed and modeled with result of the analysis. As a result, the main shaft's electromotive force was in direct proportion to the main engine's revolution. However, over the specific R.P.M., it was reduced gradually. In addition, higher electromotive force on the shaft was identified during engine's ahead direction than the astern direction. The generated electromotive force is only minor compared to the shaft grounding system.

Back EMF Design of an AFPM Motor using PCB Winding by Quasi 3D Space Harmonic Analysis Method

  • Jang, Dae-Kyu;Chang, Jung-Hwan;Jang, Gun-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.730-735
    • /
    • 2012
  • This paper presents a method to design the waveform of a back electromotive force (back EMF) of an axial flux permanent magnet (AFPM) motor using printed circuit board (PCB) windings. When the magnetization distribution of permanent magnet (PM) is given, the magnetic field in the air gap region is calculated by the quasi three dimensional (3D) space harmonic analysis (SHA) method. Once the flux density distribution in the winding region is determined, the required shape of the back EMF can be obtained by adjusting the winding distribution. This can be done by modifying the distance between patterns of PCB to control the harmonics in the winding distribution. The proposed method is verified by finite element analysis (FEA) results and it shows the usefulness of the method in eliminating a specific harmonic component in the back EMF waveform of a motor.

Stabilization of Thermo Electromotive Force of Power Type Shunt Resistor for Mass Storage Secondary Battery Management System (대용량 이차전지 관리 시스템용 전력형 션트저항의 열기전력 안정화)

  • Kim, Eun Min;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.376-380
    • /
    • 2017
  • In this paper, we prepared a metal alloy resistor with stable thermal electro motive force (thermal EMF) as well as a low temperature coefficient of resistance (TCR) by adjusting the manganese proportion from 3 to 12 wt% in the Cu-Mn-Ni alloy. Composition of the fabricated metal alloy was investigated using energy dispersive X-ray (EDX) analysis. The TCR of each sample was measured as 44.56, 40.54, 35.60, and 31.56 ppm for Cu-3Mn-2Ni, Cu-5Mn-2Ni, Cu-10Mn-2Ni, and Cu-12Mn-2Ni, respectively. All the resistor samples were available for the F grade (${\pm}1%$ of the allowable error of resistance) high-precision resistor. All the samples satisfied the baseline of high thermal EMF (under 3 mV at $60^{\circ}C$); however, Cu-3Mn-2Ni and Cu-5Mn-2Ni satisfied the baseline of low thermal EMF (under 0.3 mV at $25^{\circ}C$). We were thus able to design and fabricate the metal alloy resistor of Cu-3Mn-2Ni and Cu-5Mn-2Ni to have low TCR and stable thermal EMF at the same time.

A Torque Ripple Reduction Drive Strategy for Permanent Magnet Brushless DC Motor with Imperfect Back Electromotive Force (역기전력을 고려 한 브러시레스 전동기의 토크리플 저감에 관한 구동 방식에 대한 연구)

  • Sun, Tao;Nam, Gi-Yong;Lee, Geun-Ho;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.781-782
    • /
    • 2006
  • This paper presents a drive strategy to reduce torque ripple of a permanent magnet Brushless DC Motor(BLDCM) with short $120^{\circ}$ flat top Back Electromotive Force(Back-EMF). In this strategy, the phase Back-EMF is divided into four sections. Then, in each section the phase current is regulated by corresponding PWM duty ratio to compensatethe torque ripple caused by imperfect Back-EMF. A program based on this strategy has been implemented in MATLAB@Simulink. The validity of the presented method is verified by simulation results.

  • PDF

Comparative Study of Stator Core Composition in Transverse Flux Rotary Machine

  • Lee, Ji-Young;Moon, Seung-Ryul;Koo, Dae-Hyun;Kang, Do-Hyun;Lee, Geun-Ho;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.350-355
    • /
    • 2011
  • This paper deals with the comparison of magnetic characteristics in transverse flux rotary machine according to different stator core composition with the same rotor. Three different stator designs are considered in the analysis according to the material composition of inner and outer stator cores. Electromotive force (EMF), inductance, torque, and core losses are calculated by threedimensional finite element analysis. Calculated and measured results of back-EMF according to the analysis models in dependency on speed are presented.

Sinusoidal Back-EMF of Vernier Permanent Magnet Machines

  • Li, Dawei;Qu, Ronghai
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • Sinusoidal back-EMF waveform of vernier Permanent Magnet (PM) machines is analyzed in this paper. An analytical expression of Electromotive Force (EMF) of electric machines including vernier machines is developed to analyze EMF harmonics, and the effect of vernier PM machine pole ratio, the ratio of number of rotor poles to stator poles, on the EMF waveform. Moreover, this paper represents several Finite Element Analysis (FEA) models to verify the analysis based on the proposed expression, and the effect of tooth width ratio, which is the ratio of tooth width to tooth pitch, on back-EMF of vernier PM machines, and optimal tooth width ratio is obtained and verified by FEA. Finally, this paper makes comparisons between EMF waveform of vernier PM machines and that of traditional PM machines from the point of view of analytical EMF expression.

Evaluation of Back-EMF Estimators for Sensorless Control of Permanent Magnet Synchronous Motors

  • Lee, Kwang-Woon;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.604-614
    • /
    • 2012
  • This paper presents a comparative study of position sensorless control schemes based on back-electromotive force (back-EMF) estimation in permanent magnet synchronous motors (PMSM). The characteristics of the estimated back-EMF signals are analyzed using various mathematical models of a PMSM. The transfer functions of the estimators, based on the extended EMF model in the rotor reference frame, are derived to show their similarity. They are then used for the analysis of the effects of both the motor parameter variations and the voltage errors due to inverter nonlinearity on the accuracy of the back-EMF estimation. The differences between a phase-locked-loop (PLL) type estimator and a Luenberger observer type estimator, generally used for extracting rotor speed and position information from estimated back-EMF signals, are also examined. An experimental study with a 250-W interior-permanent-magnet machine has been performed to validate the analyses.

Improved Instantaneous Reactive Power Compensator Applied Sensorless Control of IPMSM with Adaptive Back EMF and Current Model Observer (개선된 순시 무효전력 보상기와 함께 적용된 적응 역기전력과 전류 모델 관측기 적용한 돌극형 영구자석 동기 전동기의 센서리스 제어)

  • Lee, Joonmin;Park, Soon-je;Hong, Ju-Hoon;Kim, Woohee;Kim, Young Seok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.934-935
    • /
    • 2015
  • This paper presents the sensorless control method that employs the adaptive back-EMF(Electromotive Force) and current model observer of interior permanent magnet synchronous motor(IPMSM). The estimated back EMF considering a saliency is obtained by using the adaptive control method. The estimated EMF is inputted to the current model observer which is connected in series with adaptive back EMF estimator and is used to estimate the position and speed of the rotor. In order to improve the shortcomings of conventional method using the current error components multiplied in the compensation constant, the modified instantaneous reactive power compensator is applied. The validity of the control system presented is verified by the simulation.

  • PDF

Effect of Pole to Slot Ratio on Cogging Torque and EMF Waveform in Permanent Magnet Motor with Fractional-Slot (분수슬롯을 가진 영구자석 전동기에서 극당 슬롯 비율이 코깅토크와 역기전력에 미치는 영향)

  • Lee, Kab-Jae;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.454-459
    • /
    • 2003
  • Conventional integral-slot design in permanent magnet(PM) motor tends to have a high cogging torque and large end turns, which contribute to copper losses. The fractional-slot design is effective compared to integral-slot design in the cogging torque and electromotive force(EMF) waveform. The effectiveness of fractional slot can be maximized by selecting optimal pole to slot ratio. This paper presents the effect of pole to slot ratio on the cogging torque and EMF waveform in the PM motor with fractional-slot. The effectiveness of the proposed designs has been confirmed by comparing waveform of EMF. cogging torque and torque ripple between conventional and new models.