• Title/Summary/Keyword: Electromicroscopic image

Search Result 3, Processing Time 0.017 seconds

The development of baked kelp snack through examining its physicochemical properties (물리화학적 특성 연구를 통한 구운 다시마 스낵 개발)

  • Kang, Suna;Oh, Jihee;Hong, Jeonguie;Cho, Yejin;Park, Sunmin
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.157-164
    • /
    • 2018
  • The purpose of this study was to develop a kelp (Laminaria japonica) product with optimal sensory and nutritional properties for eating as a snack by investigating its physicochemical properties and conducting sensory evaluation. A preliminary study using tripolypolyphosphate solution found that it was good for removing the fishy smell and for making it soft. We soaked the kelp in 0.3-0.4% sodium tripolyphosphate buffer and tested with or without baking. In searching for the optimal polyphosphate dilution concentration, soaking in 0.3-0.4% sodium tripolyphosphate resulted in the best texture and flavor. As kelp separates into thick or thin samples, thick kelp was best when soaked in 0.4% sodium tripolyphosphate buffer and thin soaked in 0.3%. The kelp snack made from the thick one (over 221 mm thickness) was better than the thin one. Baking improved the moisture, texture and feel of the kelp snack. Tripolyphosphate treatment affected protein contents and texture softening. The differences by baking and tripolyphosphate treatment were shown with electromicroscopic image. Kelp snacks with added sweet and hot taste were preferred to sour taste. In conclusion, in making kelp snacks, it is advisable to use a thick kelp, 0.3-0.4% sodium tripolyphosphate, and baking treatment for better texture and feel. This kelp snack has low fishy smell, better taste and soft feel. Further research is needed to support sea food's importance, and usefulness of the kelp snack to help prevent goiter in inland province citizens.

PERIPHERAL NERVE REGENERATION USING A THREE-DIMENSIONALLY CULTURED SCHWANN CELL CONDUIT (삼차원 배양된 슈반세포 도관을 이용한 말초 신경 재생)

  • Kim, Soung-Min;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.1
    • /
    • pp.1-16
    • /
    • 2004
  • The use of artificial nerve conduit containing viable Schwann cells is one of the most promising strategies to repair the peripheral nerve injury. To fabricate an effective nerve conduit whose microstructure and internal environment are more favorable in the nerve regeneration than existing ones, a new three-dimensional Schwann cell culture technique using $Matrigel^{(R)}$. and dorsal root ganglion (DRG) was developed. Nerve conduit of three-dimensionally arranged Schwann cells was fabricated using direct seeding of freshly harvested DRG into a $Matrigel^{(R)}$ filled silicone tube (I.D. 1.98 mm, 14 mm length) and in vitro rafting culture for 2 weeks. The nerve regeneration efficacy of three-dimensionally cultured Schwann cell conduit (3D conduit group, n=6) was assessed using SD rat sciatic nerve defect of 10 mm, and compared with that of silicone conduit filled with $Matrigel^{(R)}$ and Schwann cells prepared from the conventional plain culture method (2D conduit group, n=6). After 12 weeks, sciatic function was evaluated with sciatic function index (SFI) and gait analysis, and histomorphology of nerve conduit and the innervated tissues of sciatic nerve were examined using image analyzer and electromicroscopic methods. The SFI and ankle stance angle (ASA) in the functional evaluation were $-60.1{\pm}13.9$, $37.9^{\circ}{\pm}5.4^{\circ}$ in 3D conduit group (n=5) and $-87.0{\pm}12.9$, $32.2^{\circ}{\pm}4.8^{\circ}$ in 2D conduit group (n=4), respectively. And the myelinated axon was $44.91%{\pm}0.13%$ in 3D conduit group and $13.05%{\pm}1.95%$ in 2D conduit group to the sham group. In the TEM study, 3D conduit group showed more abundant myelinated nerve fibers with well organized and thickened extracellular collagen than 2D conduit group, and gastrocnemius muscle and biceps femoris tendon in 3D conduit group were less atrophied and showed decreased fibrosis with less fatty infiltration than 2D conduit group. In conclusion, new three-dimensional Schwann cell culture technique was established, and nerve conduit fabricated using this technique showed much improved nerve regeneration capacity than the silicone tube filled with $Matrigel^{(R)}$ and Schwann cells prepared from the conventional plain culture method.

EXPERIMENTAL STUDY OF PERIPHERAL NERVE REGENERATION BY USING NON-TUBULAR NATURAL CELLULOSE MEMBRANE NERVE CONDUIT (비관형 천연 셀룰로오스막 도관을 이용한 말초신경 재생에 대한 실험적 연구)

  • Kim, Soung-Min;Lee, Jong-Ho;Lee, Suk-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.4
    • /
    • pp.295-307
    • /
    • 2006
  • Styela clava, called non-native tunicate or sea squirt, is habitat which include bays and harbors in Korea and several sites in the sea faced world. We fabricate cellulose membrane nerve conduit (CMNC) from this native sea squirt skin, and evaluate the capacity of promoting peripheral nerve regeneration in the rat sciatic nerve defect model. After processing the pure cellulose membrane from the sea squirt skin as we already published before, CMNC was designed as a non-tubular sheet with 14 mm length and 4 mm width. Total eleven male Spraque-Dawley rats (12 weeks, weighing 250 to 300g) were divided into sham group (n=2), silicone tube grafted control group (n=3) and experimental group (n=6). Each CMNC grafted nerve was evaluated after 4, 8 and 12 weeks in the experimental group, and after 12 weeks, sciatic function was evaluated with sciatic function index (SFI) and gait analysis, and histomorphology of nerve conduit and the innervated tissues of sciatic nerve were all examined using image analyzer and electromicroscopic methods in the all groups. The regenerated axon and nerve sheath were found only in the inner surface of the CMNC after 4 weeks and became more thicker after 8 and 12 weeks. In the TEM study, CMNC grafted group showed more abundant organized myelinated nerve fibers with thickened extracellular matrix than silicone conduit grafted group after 12 weeks. The sciatic function index (SFI) and ankle stance angle (ASA) in the functional evaluation were $-47.2{\pm}3.9$, $35.5^{\circ}{\pm}4.9^{\circ}$ in CMNC grafted group (n=2) and $-80.4{\pm}7.4$, $29.2^{\circ}{\pm}5.3^{\circ}$ in silicone conduit grafted group (n=3), respectively. And the myelinated axon was 41.59% in CMNC group and 9.51% in silicone conduit group to the sham group. The development of a bioactive CMNC to replace autogenous nerve grafts offers a potential and available approach to improved peripheral nerve regeneration. As we already published before, small peptide fragment derived from the basement membrane matrix proteins of squirt skin, which is a kind of anchoring protein composed of glycocalyx, induced the effective axonal regeneration with rapid growth of Schwann cells beneath the inner surface of CMNC. So the possibilities of clinical application as a peripheral nerve regeneration will be able to be suggested.