• Title/Summary/Keyword: Electromechanical system

Search Result 269, Processing Time 0.026 seconds

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

Performance Enhancement of RMRAC Controller for Permanent Magnet Synchronous Motor using Disturbance Observer (외란관측기를 이용한 영구자석 동기전동기에 대한 참조모델 견실적응 제어기의 성능개선)

  • Jin, Hong-Zhe;Lim, Hoon;Lee, Jang-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.67-69
    • /
    • 2007
  • PMSM (Permanent Magnet Synchronous Motor) current control is a most inner loop of electromechanical driving systems and it plays a foundation role in the hierarchy's control loop of several mechanical machine systems. In this paper, a simple RMRAC control scheme for the PMSM is proposed in the synchronous frame. In the synchronous current model, the input signal is composed of as a calculated voltage by adaptive laws and system disturbances. The gains of feed-forward and feed-back controller are estimated by the proposed e-modification methods respectively, where the disturbances are assumed as filtered current tracking errors. After the estimation of the disturbances from the tracking errors, the corresponding voltage is fed forward to control input to compensate for the disturbances. The proposed method is robust to high frequency disturbances and has a fast dynamic response to time varying reference current trajectory. It also shows a good real-time performance duo to it's simplicity of control structure. Through the simulations considering several cases of external disturbances and experimental results, efficiency of the proposed method is verified

  • PDF

The Effect of V2O5 on the Dielectric and Piezoelectric Characteristics of Pb(Sb1/2Nb1/2)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr, Ti)O3Ceramics (V2O5가 Pb(Sb1/2Nb1/2)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr, Ti)O3세라믹스의 유전 및 압전특성에 미치는 영향)

  • 류주현;남승현;이수호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.676-680
    • /
    • 2003
  • In this study, to develop the low temperature sintering ceramics for piezoelectric transformer, PSN-PNN-PZT system ceramics were manufactured as a function of V$_2$O$_{5}$ addition, that is the low melting point oxide. Its dielectric and piezoelectric characteristics were investigated. With increasing the amount of V$_2$O$_{5}$ addition, electromechanical coupling factor(kp) and mechanical quality factor(Qm) were decreased. For piezoelectric transformer application, the 0.1wt% V$_2$O$_{5}$ added specimen sintered at 1,00$0^{\circ}C$ showed the proper value of $\varepsilon$r=1,590, kp=0.51 and Qm=748.m=748.

Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory

  • Ebrahimi, Narges;Beni, Yaghoub Tadi
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1301-1336
    • /
    • 2016
  • In this paper, the free vibrations of a short cylindrical nanotube made of piezoelectric material are studied based on the consistent couple stress theory and using the shear deformable cylindrical theory. This new model has only one length scale parameter and can consider the size effects of nanostructures in nanoscale. To model size effects in nanoscale, and considering the nanotube material which is piezoelectric, the consistent couple stress theory is used. First, using Hamilton's principle, the equations of motion and boundary condition of the piezoelectric cylindrical nanoshell are developed. Afterwards, using Navier approach and extended Kantorovich method (EKM), the governing equations of the system with simple-simple (S-S) and clamped-clamped (C-C) supports are solved. Afterwards, the effects of size parameter, geometric parameters (nanoshell length and thickness), and mechanical and electric properties (piezoelectric effect) on nanoshell vibrations are investigated. Results demonstrate that the natural frequency on nanoshell in nanoscale is extremely dependent on nanoshell size. Increase in size parameter, thickness and flexoelectric effect of the material leads to increase in frequency of vibrations. Moreover, increased nanoshell length and diameter leads to decreased vibration frequency.

Effect of $MnO_2$ on the PSN-PNN-PZT Ceramics ($MnO_2$가 PSN-PNN-PZT 세라믹스에 미치는 영향)

  • Nam, Seung-Hyon;Yoo, Ju-Hyun;Lee, Su-Ho;Kim, Hyun-Ki;Bah, Sen-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.236-239
    • /
    • 2003
  • In this study, to develop the low temperature sintering ceramics for piezoelectric transformer, PSN-PNN-PZT system ceramics were manufactured as a function of $MnO_2$ addition. Its dielectric and piezoelectric characteristics were investigated. With increasing the amount of $MnO_2$ addition, electromechanical coupling factor(kp) were increased until 0.3wt% $MnO_2$ and that after decreased. mechanical quality factor(Qm) showed the maxinum value at 0.5wt% $MnO_2$. For piezoelectric transformer application, the 0.5wt% $MnO_2$ added specimen sintered at $1,000^{\circ}C$ showed the proper value of ${\varepsilon}r$= 1,646, kp=0.55 and Qm=439.

  • PDF

Microstructure and Piezoelectric Properties of PMW-PNN-PZT Ceramics with Bismuth Substitution (PMW-PNN-PZT 세라믹스의 Bismuth 치환에 따른 미세구조 및 압전 특성)

  • Kim, Yong-Jin;Yoo, Ju-Hyun;Shin, Dong-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.332-336
    • /
    • 2016
  • In this study, in order to develop the composition ceramics for ultrasonic sensor with high $d_{33}*g_{33}$, $Pb_{1-3x/2}Bix(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_{0.09}(Zr_{0.5}Ti_{0.5})_{0.88}O_3$(PMW-PNN-PZT) system ceramics were prepared using CuO as sintering aids. And then, their microstructure, piezoelectric and dielectric characteristics were systemetically investigated with bismuth substitution. The PMW-PNN-PZT ceramic specimens could be sintered at sintering temperature of $940^{\circ}C$ by adding sintering aids. At x=0.015 specimen, the density, electromechanical coupling factor($k_p$), dielectric constant, piezoelectric constant($d_{33}$) and piezoelectric figure of merit($d_{33}*g_{33}$) indicated the optimal properties of $7.90g/cm^3$, 0.67, 2,511, 628 pC/N, and $17.7pm^2/N$, respectively, for duplex ultrasonic sensor application.

Formation of System Matrix for analyzing Magnetic Equivalent Circuit of Induction Motor (유도전동기의 자기등가회로 해석을 위한 시스템 매트릭스 구성)

  • Choi, Jae-Young;Lee, Eun-Woong;Jeong, Jong-Ho;Kim, Sung-Jong;Woo, Sung-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.330-332
    • /
    • 2000
  • To analyze the transient state of an induction motor, there have been studies for using the magnetic equivalent circuit method(MECD) instead of the time differential finite-element method. MECD which analyzes magnetic equivalent circuits after converting each part of an electric machine into the magnetic circuit elements, has the merits of short calculation-time and comparatively accurate results. To analyze an electric machine with MECM, we have to replace stator and rotor with the magnetic elements and express the air gap, where electromechanical energy conversion takes place, with the permeance. So in this study, to analyze an Induction Motor with HECM, we express the magnetic equivalent circuit as algebraic equations and then as the matrix for solving easily them. In particular, all relations are formed with matrixes to solve Mathematically them in the programming process later. As a result, this theory will be the basis on the static and dynamic analysis of an Induction Motor.

  • PDF

Ferroelectricity of the $Pb(Sc_{1/2}Nb_{1/2}$O$_3$-$PbTiO_3$ based Ceramics ($Pb(Sc_{1/2}Nb_{1/2}$O$_3$-$PbTiO_3$계 세라믹스의 강유전성)

  • 김진수;김소정;김호기;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.149-152
    • /
    • 1997
  • High-power piezoelectric materials are being developed for applications such as actuators and ultrasonic motors. In this paper, ferroelectric property of iron-doped 0.57 (Sc$_{1}$2//Nb$_{1}$2/)O$_3$-0.43 PbTiO$_3$. which is the morphotropic phase boundary composition for the PSN-PT system, was investigated. The maximum dielectric constant ( $\varepsilon$$_{33}$/$\varepsilon$$_{0}$ = 2551) and the minimum dielectric loss(tan $\delta$ = 0.51 %) at room temperature were obtained at 01. wt% and 0.3 wt% of iron additions. With additions of the Fe$_2$O$_3$ the electromechanical coupling factor of radial mode k$_{p}$ and the piezoelectric coefficient d$_{33}$ were slightly decreased, on the other hand the mechanical quality factor was increased significantly. The highest mechanical quality factor (Qm= 297) was obtained at 0.3 wt% Fe$_2$O$_3$, which is 4.4 times larger than that of pure 0.57 PSN-0.43PT ceramics. The temperature dependence of the dielectric constant and dielectic loss was observed between 2$0^{\circ}C$ and 35$0^{\circ}C$ .X> .X> .

  • PDF

Load Resistance Influence of Magnetoelectric Characteristics on NiZnFe2O4+PZT Composites for Magnetoelectric Sensors

  • Ryu, Ji-Goo;Chung, Su-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.379-386
    • /
    • 2013
  • The influences of the load resistance $R_L$ on the magnetoelectric (ME) characteristics of $NiZnFe_2O_4+PZT$ composite were investigated in the non-resonance frequency range. The ME coefficient peak increases with increasing $R_L$, but the frequency indicating the ME coefficient peak decreases with increasing $R_L$. The maximum output power peak is approximately $9.3{\times}10^{-10}mW/Oe$ near $R_L=3.3M{\Omega}$ at f=280 Hz, and the ME coefficient seems to be saturated at $R_L>20M{\Omega}$. This frequency shift effect of $R_L$ shows that the frequency range for an ME sensor application can be modulated with the appropriate value of $R_L$. The ME output voltage has a good linear response to the ac field Hac and shows fair stability over a range of temperatures. The measured non-linearity of this sample is approximately 0.8%. This sample will allow for a low-strength magnetic ac-field sensor. The result from this sample will serve as basic data for a signal-processing circuit system.

In vitro Estimation of Cardiac Output for the TAH using an Adaptive Fuzzy Identifier

  • Choi, W.W.;Jo, Y.H.;Ahn, J.M.;Park, S.K.;Choi, J.S.;Om, K.S.;Lee, J.J.;Choi, J.H.;Kim, H.C.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.263-267
    • /
    • 1996
  • An estimation algorithm based on training of fuzzy logic system using back-propagation is proposed, in this paper, for determining cardiac output in the TAH. The proposed estimation utilizes only a motor current waveform generated from the moving actuator of the electromechanical TAH without using any extra transducers as an information source for estimation. In in vitro tests, the resultant estimation performance was acceptable to alppy the proposed algorithm to animal experiments and further clinical applications.

  • PDF