• Title/Summary/Keyword: Electromagnetic wave reflection material

Search Result 35, Processing Time 0.02 seconds

A hybrid model of regional path loss of wireless signals through the wall

  • Xi, Guangyong;Lin, Shizhen;Zou, Dongyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3194-3210
    • /
    • 2022
  • Wall obstruction is the main factor leading to the non-line of sight (NLoS) error of indoor localization based on received signal strength indicator (RSSI). Modeling and correcting the path loss of the signals through the wall will improve the accuracy of RSSI localization. Based on electromagnetic wave propagation theory, the reflection and transmission process of wireless signals propagation through the wall is analyzed. The path loss of signals through wall is deduced based on power loss and RSSI definition, and the theoretical model of path loss of signals through wall is proposed. In view of electromagnetic characteristic parameters of the theoretical model usually cannot be accurately obtained, the statistical model of NLoS error caused by the signals through the wall is presented based on the log-distance path loss model to solve the parameters. Combining the statistical model and theoretical model, a hybrid model of path loss of signals through wall is proposed. Based on the empirical values of electromagnetic characteristic parameters of the concrete wall, the effect of each electromagnetic characteristic parameters on path loss is analyzed, and the theoretical model of regional path loss of signals through the wall is established. The statistical model and hybrid model of regional path loss of signals through wall are established by RSSI observation experiments, respectively. The hybrid model can solve the problem of path loss when the material of wall is unknown. The results show that the hybrid model can better express the actual trend of the regional path loss and maintain the pass loss continuity of adjacent areas. The validity of the hybrid model is verified by inverse computation of the RSSI of the extended region, and the calculated RSSI is basically consistent with the measured RSSI. The hybrid model can be used to forecast regional path loss of signals through the wall.

Monostatic RCS Reduction by Gap-Fill with Epoxy/MWCNT in Groove Pattern

  • Choi, Won-Ho;Jang, Hong-Kyu;Shin, Jae-Hwan;Song, Tae-Hoon;Kim, Jin-Kyu;Kim, Chun-Gon
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.101-106
    • /
    • 2012
  • In this study, we investigated the effect of groove pattern and gap-fill with lossy materials at 15 GHz frequency of Ku-band. We used Epoxy/MWCNT composite materials as gap-fill materials. Although epoxy does not have an absorbance capability, epoxy added conductive fillers, which are multi-walled carbon nanotubes (MWCNT), can function as radar absorbing material. Specimens were fabricated with different MWCNT mass fractions (0, 0.5, 1.0, 2.0 wt%) and their permittivity in the Ku-band was measured using the waveguide technique. We investigated the effect of gap-fill on monostatic RCS by calculating RCS with and without gap-fill. For arbitrarily chosen thickness and experimentally obtained relative permittivity, we chose the relative permittivity of MWCNT at 2 wt% (${\varepsilon}_r$=8.8-j2.4), which was the lowest reflection coefficient for given thickness of 3.3 mm at V-pol. and $80^{\circ}$ incident angle. We also checked the monostatic RCS and the field intensity inside the groove channel. In the case of H-pol, gap-fill was not affected by the monostatic RCS and magnitude was similar with or without gap-fill. However, in the case of V-pol, gap-fill effectively reduced the monostatic RCS. The field intensity inside the groove channel reveals that different RCS behaviors depend on the wave polarizations.

A Study on EM Wave Absorber for Electromagnetic Wave Environment of Wireless LAN at 5.2 GHz (5.2 GHz 무선 LAN의 전자파 환경 대책용 전파흡수체에 관한 연구)

  • Yoo, Gun-Suk;Choi, Dong-Soo;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • Recently, the wireless LAN system is rapidly growing because of its convenience of high speed communication. However, the wireless LAN systems at indoor places occur multi-propagation path by reflected waves from walls, ceilings, floors, and desks. Multipath problems cause transmission errors and degradation of communication speed. These problems can be solved by using EM wave absorbers. In this paper, we analyzed property of Graphite and derived the optimum ratio of Graphite: CPE to develop EM wave absorber for the wireless LAN system. First, we fabricated several samples in different composition ratios of Graphite and CPE, and then measured the reflection coefficient of each samples. Material constants of permittivity and permeability were calculated using the measured data and designed EM wave absorber. Secondly, the EM wave absorber was fabricated and tested on the base of the simulation data. As a result, it showed that the EM wave absorber in 1.7 mm thickness with the ratio of Graphite: CPE=50:50 wt.% has excellent absorption ability more than 27 dB at 5.2 GHz.

Experiments of bragg and off-bragg blazing phenomena by strip grting over a grounded dielectric slab for TE polarization case (접지된 유전체판 위에 위치한 스트립 격자에 TE편파된 평면파가 입사되는 경우에서의 bragg 및 off-bragg balzing 현상-실험)

  • Baek, W.S.;Cho, U.H.;Lee, C.H.;Cho, Y.K.;Son, H.
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.5
    • /
    • pp.1-6
    • /
    • 1997
  • An analysis method for the electromagnetic scattering of a tE polarized plane wave from a periodic strip grating over a grounded dielectric slab is consisered from the viewpoint of reflectio ngraing problem. The strip gratings showing bragg and off-bragg balzing phenomena at the frequency of 10GHz are designed, respectively. The strip grating structure is implemented using aluminum plate (hround conductor), paraffin(dielectric material ; .xi.$_{\gamma}$=2.24) and copper (strip conductor ; 0.08mm thickness). The experimental results (reflection power) for bragg as well as off-bragg blazing phenomenon have been compared with the theoretical results and fairly good agreements between theory and experiment have been observed.ed.

  • PDF

Microwave Absorbing Properties of Iron Particles-Rubber Composites in Mobile Telecommunication Frequency Band (이동통신주파수 대역에서 순철 분말-고무 복합체 Sheet의 전파흡수특성)

  • Kim, Sun-Tae;Kim, Sant-Keun;Kim, Sung-Soo;Yoon, Yeo-Choon;Lee, Kyung-Sub;Choi, Kwang-Bo
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.131-137
    • /
    • 2004
  • For the aim of thin electromagnetic wave absorbers used in mobile telecommunication frequency band (0.8-2.0㎓), we investigate high-frequency magnetic, dielectric and microwave absorbing properties of iron particles dispersed in rubber matrix in this study. The major experimental variables are particle shape (sphere and flake) and initial particle size (in the range 5-70 $\mu\textrm{m}$) of iron powders. High value of magnetic permeability and dielectric permittivity can be obtained in the composites containing thin plate-shape (flake) iron particles (of which thickness is less than skin depth in ㎓frequency), which can be produced by mechanical forging of spherical iron powders using an attrition mill. This result is attributed to the reduction of eddy current loss (increase of permeability) and the increase of space charge polarization (increase of permeability). The optimum initial particle size is found to be about 10 $\mu\textrm{m}$ for the attainment of the material parameters (particularly, real part of complex permeability) satisfying the wave impedance matching. With the iron powders controlled in size and shape as absorbent fillers in rubber matrix, the thickness can be reduced to about 0.7mm with respect to -5㏈ reflection loss (70% power absorption) in mobile telecommunication frequency band.