• Title/Summary/Keyword: Electromagnetic torque

Search Result 195, Processing Time 0.024 seconds

A Comparative Study on the Structural Characteristics of the Novel Two-Phase 8/6 Switched Reluctance Machine (새로운 2상 8/6 SRM의 구조적 특성에 관한 비교 연구)

  • Lee, Cheewoo;Hwang, Hongsik;Oh, Seok-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.315-322
    • /
    • 2017
  • This study presents a novel two­phase eight stator poles and six rotor poles (8/6) switched reluctance machine (SRM) that can compensate for the vibration and noise problems of two­phase 6/3 SRM and compare the characteristics of two SRMs. In the case of two­phase 6/3 SRM, the short flux path and the flux direction inside the stator are not reversed, so they have high efficiency characteristics. However, the use of three rotor poles causes problems of vibration and noise because the radial force applied to the rotor poles is not balance. The proposed two­phase 8/6 SRM has advantages of 6/3 SRM such as the flux­reversal­free stator and it can improve vibration and noise by using six rotor poles due to balanced radial force acting on the rotor poles. In order to make a reasonable comparison between two SRMs, the electromagnetic field structure of 8/6 SRM is designed to have equivalent torque characteristic to 6/3 SRM and then the copper loss and core loss are compared and analyzed. Finally, we compare the effieicney of two SRMs using finite element analysis and compare the distribution of radial force acting on the rotor poles based on Maxwell's stress method.

A Study on the Ultra-Small Pendulum Generator Applicable to Wearable IT Device (웨어러블 IT 기기에 적용 가능한 초소형 진자 발전기에 관한 연구)

  • Jee, In-Ho;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.139-143
    • /
    • 2022
  • In this study, Among the electromagnetic induction power generation (EMG) techniques, the design specifications of the RFPM were set, and a suitable test prototype was manufactured through finite element analysis (FEM, 2D) required for characteristic calculation. In addition, a dedicated testing device (Dynamo-Tester) was designed and manufactured to measure and analyze the test prototype. The test product was measured with a test device and the result is analyzed to suggest a method that can be applied by generating as much output power as possible to charge the battery of the wearable IT device using actual kinetic energy of the human body. As a result of the test, the output power was 1.679W and the efficiency was 79.31% under the conditions of rotation speed of 780.9rpm, torque of 0.264kgf/cm, and load current of 73.6~73.9mA. Therefore, it was analyzed that it was possible to charge the wearable device with the output of the ultra-small RFPM pendulum generator.

Simulator for 3 Phase Induction Motor with LCL Filter and PWM Rectifier (LCL 필터와 PWM 정류기를 이용한 3상 유도전동기의 시뮬레이터)

  • Cho, Kwan Yuhl;Kim, Hag Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.861-869
    • /
    • 2020
  • A dynamo set for a high-power induction motor drive is expensive and needs a long time to manufacture. Therefore, the development of a simulator that functions as the induction motor and load equipment is required. A load simulator of an inverter for a high-power three-phase induction motor consists of a reactor and three-phase PWM inverter. Therefore, it cannot simulate the dynamic characteristics of an induction motor and functions only as a load. In this paper, a real-time simulator is proposed to simulate a model of an induction motor and the load characteristics based on an LCL filter and three-phase PWM rectifier for a three-phase induction motor. The currents of a PWM inverter that simulate the stator currents of the motor are controlled by the inductor currents and capacitor voltages of the LCL filter. The capacitor voltages of the LCL filter simulate the induced voltages in the stator windings by the rotating rotor fluxes of the motor, and the capacitor voltages are controlled by the inductor currents and a PWM rectifier. The rotor currents, the stator and rotor flux linkages, the electromagnetic torque, the slip frequency, and the rotor speed are derived from the inverter currents and the motor parameters. The electrical and mechanical model characteristics and the operation of vector control were verified by MATLAB/Simulink simulation.

Evaluation of Muscle Fatigue Recovery Effect and Meridian Potential Change using Magnetic Acupuncture System (자화침 시스템을 이용한 경락전위 유발효과 및 근피로 회복 평가)

  • Kim, Soo-Byeong;Park, Sun-Woo;Ahn, Soon-Jae;Lee, Na-Ra;Lee, Seung-Wook;Min, Se-Eun;Kim, Young-Ho;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.29 no.1
    • /
    • pp.83-92
    • /
    • 2012
  • Objectives : The purpose of this research was to develop the magnetic acupuncture system which used solenoid coil for magnetizing acupuncture needle. The system could generate the meridian electric potential (MEP) similar to the potential by manual acupuncture. Thus, we tried to confirm the therapeutic effect that is caused by the MEP generation. Methods : To confirm the MEP, we stimulated the magnetic acupuncture with at 2Hz, $92.7{\pm}2mT$, PEMFs (Pulsed Electro-Magnetic Fields) at ST37 and measured the evoked potential between ST36 and ST41. Also, we conducted a fatigue recovery test using isokinetic exercise in order to identify the therapeutic effect on musculoskeletal disorders. We chose LR9 as a stimulation point. To observe the state of fatigue, we measured the EMG and analyzed median frequency and peak torque for 20minutes. Results : We observed that MEP which incurred from magnetic acupuncture was higher than he reported MEP induced by manual acupuncture. Moreover, its modes were divided into two types by the direction of magnetic flux. When generating magnetic flux in the direction of acupoint, the positive peak voltage of the MEP was generated. In contrast, negative peak voltage of the MEP was generated whenever meganetic flux generated in the outward direction. As a result of fatigue recovery, the median frequency (MF) of the magnetic acupuncture group were recovered faster than that of the non-stimulation group. However, the peak torques of both groups were not restored until after 20 minutes. Conclusions : We confirmed that the magnetic acupuncture system can lead to the MEP similar to manual acupuncture. Moreover, the MEP had a therapeutic effect on the musculoskeletal disorders.

THE CHANGE OF THE INITIAL DYNAMIC VISCO-ELASTIC MODULUS OF COMPOSITE RESINS DURING LIGHT POLYMERIZATION (광중합 복합레진의 중합초기 동적 점탄성의 변화)

  • Kim, Min-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.450-459
    • /
    • 2009
  • The aim of this study was to measure the initial dynamic modulus changes of light cured composites using a custom made rheometer. The custom made rheometer consisted of 3 parts: (1) a measurement unit of parallel plates made of glass rods, (2) an oscillating shear strain generator with a DC motor and a crank mechanism, (3) a stress measurement device using an electromagnetic torque sensor. This instrument could measure a maximum torque of 2Ncm, and the switch of the light-curing unit was synchronized with the rheometer. Six commercial composite resins [Z-100 (Z1), Z-250 (Z2), Z-350 (Z3), DenFil (DF), Tetric Ceram (TC), and Clearfil AP-X (CF)] were investigated. A dynamic oscillating shear test was undertaken with the rheometer. A certain volume ($14.2\;mm^3$) of composite was loaded between the parallel plates, which were made of glass rods (3 mm in diameter). An oscillating shear strain with a frequency of 6 Hz and amplitude of 0.00579 rad was applied to the specimen and the resultant stress was measured. Data acquisition started simultaneously with light curing, and the changes in visco-elasticity of composites were recorded for 10 seconds. The measurements were repeated 5 times for each composite at $25{\pm}0.5^{\circ}C$. Complex shear modulus G*, storage shear modulus G', loss shear modulus G" were calculated from the measured strain-stress curves. Time to reach the complex modulus G* of 10 MPa was determined. The G* and time to reach the G* of 10 MPa of composites were analyzed with One-way ANOVA and Tukey's test ($\alpha$ = 0.05). The results were as follows. 1. The custom made rheometer in this study reliably measured the initial visco-elastic modulus changes of composites during 10 seconds of light curing. 2. In all composites, the development of complex shear modulus G* had a latent period for $1{\sim}2$ seconds immediately after the start of light curing, and then increased rapidly during 10 seconds. 3. In all composites, the storage shear modulus G" increased steeper than the loss shear modulus G" during 10 seconds of light curing. 4. The complex shear modulus of Z1 was the highest, followed by CF, Z2, Z3, TC and DF the lowest. 5. Z1 was the fastest and DF was the slowest in the time to reach the complex shear modulus of 10 MPa.