• Title/Summary/Keyword: Electromagnetic rail gun

Search Result 4, Processing Time 0.021 seconds

Coil Gun Electromagnetic Launcher (EML) System with Multi-stage Electromagnetic Coils

  • Lee, Su-Jeong;Kim, Ji-Hun;Song, Bong Sob;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.481-486
    • /
    • 2013
  • An electromagnetic launcher (EML) system accelerates and launches a projectile by converting electric energy into kinetic energy. There are two types of EML systems under development: the rail gun and the coil gun. A railgun comprises a pair of parallel conducting rails, along which a sliding armature is accelerated by the electromagnetic effects of a current that flows down one rail, into the armature and then back along the other rail, but the high mechanical friction between the projectile and the rail can damage the projectile. A coil gun launches the projectile by the attractive magnetic force of the electromagnetic coil. A higher projectile muzzle velocity needs multiple stages of electromagnetic coils, which makes the coil gun EML system longer. As a result, the installation cost of a coil gun EML system is very high due to the large installation site needed for the EML. We present a coil gun EML system that has a new structure and arrangement for multiple electromagnetic coils to reduce the length of the system. A mathematical model of the proposed coil gun EML system is developed in order to calculate the magnetic field and forces, and to simulate the muzzle velocity of a projectile by driving and switching the electric current into multiple stages of electromagnetic coils. Using the proposed design, the length of the coil gun EML system is shortened by 31% compared with a conventional coil gun system while satisfying a target projectile muzzle velocity of over 100 m/s.

Fundamental Aspects of the Unbalance Condition for the Forces involved in Rail Gun Recoil

  • Banerjee, Arindam;Radcliffe, P.J.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.317-324
    • /
    • 2014
  • The forces involved in the firing of the electromagnetic rail gun may be analyzed from Amperian, Maxwellian and Einsteinian approaches. This paper discusses these different paradigms with regard to rail gun performance modeling relating to the generation and balance of the forces caused by the currents and their induced magnetic fields. Recent experimental work on model rail guns, where the armature is held static, shows very little recoil upon the rails, thereby indicating a possible violation of Newton's Third Law of Motion. Dynamic testing to show this violation, as suggested by the authors in an earlier paper, has inherent technical difficulties. A purpose-built finite element C/C++ simulator that models that suspended rail gun firing action shows a net force acting upon the entire rail gun system. A new effect in physics, universal in scope, is thus indicated: a current circulating in an asymmetric and rigid circuit causes a net force to act upon the circuit for the duration of the current. This conclusion following from computer simulation based upon Maxwellian electrodynamics as opposed to the more modern relativistic quantum electrodynamics needs to be supported by unambiguous experimental validation.

Analysis of Development Trend for the Integrated Power System of Naval Vessels to Perform the High-Power and Energy Mission Load Platform (고출력 에너지 사용 체계 플랫폼 실현을 위한 해군함정의 통합 동력 시스템 발전 경향 분석)

  • Lee, Hyung-Min;Cho, Byung-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.796-801
    • /
    • 2011
  • The objective of this work presented here was focused on analysis of development trend for the integrated power system of naval vessels to perform the high-power and energy mission load platform. These mission loads are affected by the high level of military technologies, digitalization of the ocean battlefield, high power sensor system for maximization of the ship survivability. All electric power including propulsion power for ship should be controlled by integrated single system in order to carry various high power density weapon system such as Electromagnetic Aircraft Launch System, Electromagnetic Rail Gun[feasible precision striking at long distance 200NM(370km) or over]. As the analyzing the present state of things, mechanical propulsion system is shifted into hybrid or fully electric propulsion systems to realize integrated power system at the developed countries. Such challenges include reduced dependency on foreign-supplied fossil fuel, increasing demand for installed ship power, controlling life-cycle costs.

A Novel High Precision Electromagnetic Suspension for Long-Stroke Movement and Its Performance Evaluation

  • Lee, Ki-Chang;Moon, Seokhwan;Ha, Hyunuk;Park, Byoung-Gun;Kim, Ji-Won;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.514-522
    • /
    • 2014
  • A new type of high precision electromagnetic suspension (EMS) which can support heavy tray along long stroke rail is proposed in this paper. Compared with the conventional EMS, the suggested moving-core typed EMS has the levitation electromagnets (EMs) on the fixed rail. This scheme has high load capability caused by iron-core and enables simple tray structure. Also it does not have precision degradation caused by heat generation from EMs, which is a drawback of conventional EMS. With these merits, the proposed EMS can be an optimal contactless linear bearing in next generation flat panel display (FPD) manufacturing process if the ability of long stroke movement is proved. So a special Section Switching Algorithm (SSA) is derived from the resultant force and moment equations of the levitated tray which enables long stroke movement of the tray. In order to verify the feasibility of the suggested SSA, a simple test-setup of the EMS with 2 Section-changes is made up and servo-controlled in the simulation and experiment. The simulation shows the perfect changeover the EMs, and the experiment shows overall control performance of under ${\pm}40{\mu}m$ gap deviations. These results reveal that the newly suggested contactless linear bearing can simultaneously achieve high load capability and precision gap control as well as long stroke.