• Title/Summary/Keyword: Electromagnetic interference shielding

Search Result 107, Processing Time 0.028 seconds

Properties of Activated Carbon Blacks Filled SBR Rubber Composites

  • Ao, Geyou;Hu, Quanli;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Rubber reinforcing carbon black N330 was treated by physical activation under $CO_2$ to different degrees of burn-off. The mechanical properties indicating the reinforcement of SBR (Styrene-Butadiene Rubber) vulcanizates filled by activated carbon blacks, such as tensile strength, modulus at 300% strain and elongation at break were determined. During $CO_2$ activation of fresh carbon blacks, the development of microporous structure caused an increase of extremely large specific surface area and the porosity turned out to be an increasing function of the degree of burn-off. The tensile strength and modulus at 300% of activated carbon blacks filled rubber composites were improved at lower loading ratios of 20 and 30 phr, but decreased drastically after 30 phr, which is considered that it might be difficult to get a fully dispersed rubber mixture at higher loading ratios for fillers having very large specific surface areas. However, the Electromagnetic Interference (EMI) shielding effectiveness of SBR rubber composites having activated carbon black at 74% yield were improved at a large extent when compared to those having raw carbon black and increased significantly as a function of increasing loading ratio.

Enhanced adhesion properties of conductive super-hydrophobic surfaces by using zirco-aluminate coupling agent

  • Park, Myung-Hyun;Ha, Ji-Hwan;Song, Hyeonjun;Bae, Joonwon;Park, Sung-Hoon
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.387-392
    • /
    • 2018
  • Various technical approaches and concepts have been proposed to develop conductive super-hydrophobic (SH) surfaces. However, most of these approaches are not usable in practical applications because of insufficient adhesion and cost issues. Additionally, durability and uniformity issues are still in need of improvement. The goal of this research is to produce a large-area conductive SH surface with improved adhesion performance and uniformity. To this end, carbon nanotubes (CNT) with a high aspect ratio and elastomeric polymer were utilized as a conductive filler and matrix, respectively, to form a coating layer. Additionally, nanoscale silica particles were utilized for stable implementation of the conductive SH surface. To improve the adhesion properties between the SH coating layer and substrate, pretreatment of the substrate was conducted by utilizing both wet and dry etching processes to create specific organic functional groups on the substrate. Following pretreatment of the surface, a zirco-aluminate coupling agent was utilized to enhance adhesion properties between the substrate and the SH coating layer. Raman spectroscopy revealed that adhesion was greatly improved by the formation of a chemical bond between the substrate and the SH coating layer at an optimal coupling agent concentration. The developed conductive SH coating attained a high electromagnetic interference (EMI) shielding effectiveness, which is advantageous in self-cleaning EMI shielding applications.

Dispersion Characteristics of Magnetic Particle/Graphene Hybrid Based on Dispersant and Electromagnetic Interference Shielding Characteristics of Composites (분산제에 따른 자성금속 무전해도금 기반 그래핀 분산 특성 및 복합재의 전자파 차폐 특성 연구)

  • Lee, Kyunbae;Lee, Junsik;Jung, Byung Mun;Lee, Sang Bok;Kim, Taehoon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.111-116
    • /
    • 2018
  • In this paper, magnetic FeCoNi particles have been grown through electroless plating on the surface of graphene, and then this hybrid material has been dispersed by various surfactants to prepare films. The pyridine surfactant shows the highest dispersability and low surface resistance value (351 Ohm/sq) and the electromagnetic shielding ability at the frequency of 10 GHz. Specially, the evaporation of the pyridine during the drying process could be able to form the internal conductive network and high dispersion of FeCoNi on the surface of graphene.

The Study on a Fixing-clip of a Shield Can Shielding Electromagnetic wave (전자파 차단을 위한 �Q드캔용 고정 클립 개발에 관한 연구)

  • Park, Tai-Heoun;Park, Man-Gyu;Park, Sang-Heup;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.554-560
    • /
    • 2013
  • This study proposes an structure that fixes the shielding device to two parts of the board by its two arranged clips. Said structure evenly distributes its loading/unloading load of the board and maintains the flatness of soldering area of the board. The structure of this study comprises a base part fixed to a printed circuit board and a clip part fixing a side wall of a shield can to the board, wherein the clip part is constituted with two clips fixable to two part of the shield can. Also, the structure of this study comprises a dented groove in order to easily solder the base part of clips and the printed circuit board. A mechanism is established and a design parameter was determined by a structure analysis and a vibration mode analysis. A single purpose machine for the production of the product was developed, the final workpiece was produced and the measuring-data and the computered-data was compared and reviewed.

Study of Defect Prevention on Weld Zone of Magnesium Alloy by Pulse Control of Nd:YAG Laser (Nd:YAG 레이저의 펄스 제어에 의한 마그네슘 합금 용접부의 결함 방지에 관한 연구)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Jang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.99-104
    • /
    • 2010
  • Magnesium and magnesium alloys, the lightest structural materials, have been received plenty of global attention recently. These alloys could be applied in various fields, especially the electronics industry, because of their excellent electromagnetic interference shielding. However, the welding technique of magnesium alloys has not been established. This study is related to the welding of AZ31B magnesium alloy by a short-pulsed a Nd:YAG laser. Two types of pulse waves, square pulse and variable pulse, were used to control weld defects. Results show that the crack and porosity, generated in the weld, had not been controlled by general square pulse. But through the application of variable pulse, the defects could be prevented and the good weld zone was obtained.

Electromagnetic Interference Reflectivity of Nanostructured Manganese Ferrite Reinforced Polypyrrole Composites

  • Chakraborty, Himel;Chabri, Sumit;Bhowmik, Nandagopal
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.295-298
    • /
    • 2013
  • Nano-size manganese ferrite reinforced conductive polypyrrole composites reveal a core-shell structure by in situ polymerization, in the presence of dodecyl benzene sulfonic acid as the surfactant and dopant, and iron chloride as the oxidant. The structure and magnetic properties of manganese ferrite nano-fillers were measured, by using X-ray diffraction and vibrating sample magnetometer. The morphology, microstructure, and conductivity of the composite were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, and four-wire technique. The microwave-absorbing properties of composites reinforcement dispersed in resin coating with the coating thickness of 1.2 nm were investigated, by using vector network analyzers, in the frequency range of 8~12 GHz. A reflection loss of -8 dB was observed at 10.5 GHz.

Characteristics of Shield Materials for Wireless Power Transfer

  • Chu, In Chang;Jeong, Jinseong
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.291-294
    • /
    • 2014
  • In this paper, we examine the electrical and magnetic properties of three different types of shield materials used for wireless power transfer systems: namely, FeSiAl-composite, NiZn-ferrite, and FeSi-amorphous types. The power transfer efficiency and resistance of an RX coil are measured, while varying the shield thickness. For all three types, a thicker shield provides better power transfer efficiency. Analysis of the measurements shows that the FeSiAl-composite type is suitable for systems with size limitation. In terms of magnetic properties, the FeSi-amorphous type shows the best features, and is suited to high power applications. This work can be used as a guideline to select suitable shielding material in various wireless power transfer systems.

High Quality Transient Voltage Measuring Device Using Optical Technique (광기법을 이용한 고정도 과도전압측정기)

  • Lee, Bok-Hee;Kil, Gyung-Suk;Jeon, Duk-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.441-443
    • /
    • 1995
  • A new optical-resistive voltage divider, which consists of light emitting diode, optic fiber, PIN-photo diode and a high qualify shielding resistive divider, whose total response time is 7.35 [ns], has been obtained. The optical to electrical signal converter was constructed with GaAsP series light emitting diode. The response characteristics have been verified by applying the Marx impulse voltage generator experimentally. Comparing with the performance of conventional resistive voltage divider, the characteristics of the proposed optical-resistive voltage divider are more excellent in step response and less sensitive to electromagnetic interference.

  • PDF

Finite Element Analysis of warm Circular Cup Deep Drawing Process of AZ31 Sheet (AZ31 판재의 온간 원형컵 딥드로잉 공정의 유한요소 해석)

  • Lee, M.H.;Kim, H.Y.;Kim, H.K.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.230-233
    • /
    • 2007
  • Due to their low density, high specific strength and electromagnetic interference shielding, magnesium alloy sheets are used increasingly more often in automotive, aerospace, and electronics industries. However, magnesium ally sheets should be usually formed at elevated temperature because of their poor formability at room temperature. For the use of magnesium alloy sheets for an industrial, their mechanical properties at elevated temperature and appropriate forming process conditions have to be developed. In this study, the warm deep drawing process of AZ31 sheets is studied numerically by non-isothermal simulation. The difference between the isothermal simulation results and the non-isothermal simulation results and the progress of warm forming are discussed.

  • PDF

A Study on the Evaluation Method of Shielding Effectiveness using NFS in Near-Field Tests (근거리장에서 NFS를 사용한 차폐효율 평가방법에 관한 연구)

  • Park, Jungyeol;Song, Inchae;Kim, Boo-Gyoun;Kim, Eun-Ha
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.76-82
    • /
    • 2016
  • In this paper, we evaluated shielding effectiveness (SE) of carbon nanotube (CNT) film using near field scanning (NFS) in near field analysis. We adopted CNT film with deposit carbon density of 5% and thickness of 1mm for evaluation of shielding characteristic. Using a test coupon analogized to an actual IC package, we measured SE according to measuring position and SE according to distances between the CNT film and the test coupon. As a result, the measured SE in the near field varied with frequency. Especially, the measured electric field SE in the center of the test coupon is better than that of the measured edge point of the test coupon where it is affected by fringing effect. The results show that the measured SE in the near field is affected not only by frequency but also by measurement environment such as position and height of the probe and height of shielding film. In conclusion, we should choose proper methods for SE measurement considering interference distance in the electronic control system because there is little correlation between the proposed evaluation method in the near field and ASTM D 4935-10.