• Title/Summary/Keyword: Electromagnetic Topology

Search Result 102, Processing Time 0.016 seconds

Modified Direct Torque Control using Algorithm Control of Stator Flux Estimation and Space Vector Modulation Based on Fuzzy Logic Control for Achieving High Performance from Induction Motors

  • Rashag, Hassan Farhan;Koh, S.P.;Abdalla, Ahmed N.;Tan, Nadia M.L.;Chong, K.H.
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.369-380
    • /
    • 2013
  • Direct torque control based on space vector modulation (SVM-DTC) protects the DTC transient merits. Furthermore, it creates better quality steady-state performance in a wide speed range. The modified method of DTC using SVM improves the electrical magnitudes of asynchronous machines, such as minimizing the stator current distortions, the stator flux with electromagnetic torque without ripple, the fast response of the rotor speed, and the constant switching frequency. In this paper, the proposed method is based on two new control strategies for direct torque control with space vector modulation. First, fuzzy logic control is used instead of the PI torque and a PI flux controller to minimizing the torque error and to achieve a constant switching frequency. The voltages in the direct and quadratic reference frame ($V_d$, $V_q$) are achieved by fuzzy logic control. In this scheme, the switching capability of the inverter is fully utilized, which improves the system performance. Second, the close loop of stator flux estimation based on the voltage model and a low pass filter is used to counteract the drawbacks in the open loop of the stator flux such as the problems saturation and dc drift. The response of this new control strategy is compared with DTC-SVM. The experimental and simulation results demonstrate that the proposed control topology outperforms the conventional DTC-SVM in terms of system robustness and eliminating the bad outcome of dc-offset.

3D Node Deployment and Network Configuration Methods for Improvement of Node Coverage and Network Connectivity (커버리지와 네트워크 연결성 향상을 위한 3차원 공간 노드 배치 및 망 구성 방법)

  • Kim, Yong-Hyun;Kim, Lee-Hyeong;Ahn, Mirim;Chung, Kwangsue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.778-786
    • /
    • 2012
  • Sensors that are used on wireless sensor networks can be divided into two types: directional sensors, such as PIR, image, and electromagnetic sensors; and non-directional sensors, such as seismic, acoustic and magnetic sensors. In order to guarantee the line-of-sight of a directional sensor, the installation location of the sensor must be higher than ground level. Among non-directional sensors, seismic sensors should be installed on the ground in order to ensure the maximal performance. As a result, seismic sensors may have network connectivity problems due to communication failure. In this paper, we propose a 3D node deployment method to maximize the coverage and the network connectivity considering the sensor-specific properties. The proposed method is for non-directional sensors to be placed on the ground, while the directional sensor is installed above the ground, using trees or poles, to maximize the coverage. As a result, through the topology that the detection data from non-directional sensors are transmitted to the directional sensor, we can maximize the network connectivity. Simulation results show that our strategy improves sensor coverage and network connectivity.