• Title/Summary/Keyword: Electromagnetic Shielding Effectiveness

Search Result 138, Processing Time 0.027 seconds

A Study on Laminated Shielding (박판접합에 의한 전자기파의 차폐)

  • Noh-Hoon Myung
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.2
    • /
    • pp.25-29
    • /
    • 1991
  • In this paper, laminated shielding effectiveness equation is derived from basic shielding theory and this equation is applied to calculate the shielding effectiveness for two typical non-magnetic shielding materials, Aluminium and steel, when they are coated with conductive paint.

  • PDF

A Study on the Electromagnetic Shielding of Conductive Powder (도전성(導電性) 분체(粉體)의 전자차폐(電磁遮蔽)에 관한 연구(硏究))

  • Kim, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.244-249
    • /
    • 2004
  • In this paper, shielding effectiveness(SE) of the shielding paint of electromagnetic(EM) waves was investigated with actual experiments. The shielding paint used in this study were made of powder of conductive materials - Ag, Cu, Al, Sn, Ni. Cr, Graphite and Charcoal etc. with a solubility in oil and water. Also, the paper was used as a base sheet. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that silver, copper, nickel were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of density of particles on the SE were studied about the EM shielding paint. The SE strongly depended on the electric resistance by density of painting particles. SE increased as the density of particles was increasing.

  • PDF

Effect of fiber geometry on the electromagnetic shielding performance of mortar

  • Kim, Young Jun;Yemam, Dinberu M.;Kim, Baek-Joong;Yi, Chongku
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • The increased awareness of electromagnetic wave hazards has prompted studies on electromagnetic shielding using conductive materials in the construction industry. Previous studies have explored the effects of the types of conductive materials and their mix proportions on the electromagnetic shielding performance; however, there has been insufficient research on the effect of the geometry of the conductive materials on the electromagnetic shielding performance. Therefore, in this study, the dependence of the electromagnetic shielding performance on the cross-sectional geometry, diameter and length of fibers was investigated. The results showed that the electromagnetic shielding performance improved when the fiber length increased or the diameter decreased, but the effect of the cross-sectional geometry of the fibers was smaller than the effect of the fiber spacing factor.

Technical Trends of Flexible, Transparent Electromagnetic Interference Shielding Film (유연한 투명 전자기 간섭 차폐 필름의 기술개발 동향)

  • Lim, Hyun-Su;Oh, Jung-Min;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.21-29
    • /
    • 2021
  • Recently, semiconductor chips and electronic components are increasingly being used in IT devices such as wearable watches, autonomous vehicles, and smart phones. As a result, there is a growing concern about device malfunctions that may occur due to electromagnetic interference being entangled with each other. In particular, electromagnetic wave emissions from wearable or flexible smart devices have detrimental effects on human health. Therefore, flexible and transparent electromagnetic interference (EMI) shielding materials and films with high optical transmittance and outstanding shielding effectiveness have been gaining more attention. The EMI shielding films for flexible and transparent electronic devices must exhibit high shielding effectiveness, high optical transmittance, high flexibility, ultrathin and excellent durability. Meanwhile, in order to prepare this EMI shielding films, many materials have been developed, and results regarding excellent EMI shielding performance of a new materials such as carbon nano tube (CNT), graphene, Ag nano wire and MXene have recently been reported. Thus, in this paper, we review the latest research results to EMI shielding films for flexible and transparent device using the new materials.

Electromagnetic Interference Shielding Effectiveness of a Corrugated Rectangular Waveguide for an Open-Type Microwave Conveyor-Belt Dryer (개방형 마이크로파 컨베이어 벨트 건조기의 요철 직사각형 도파관 차폐효과)

  • Kim, Sung-Yeon;Bae, Sang-Hyeon;Lee, Wang-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.424-432
    • /
    • 2018
  • We herein analyze and study the shielding effectiveness characteristic of an open conveyor-belt-type microwave dryer that is widely used in industry. In particular, the electromagnetic wave leakage problem of the open-type conveyor belt dryer using a general-purpose 2.45-GHz magnetron was improved by applying the corrugated rectangular waveguide. We conducted the electromagnetic simulation of the optimal shielding effectiveness characteristic with regard to the proposed waveguide structure to analyze the attenuation characteristics of the corrugated rectangular waveguide. To verify the shielding effectiveness characteristic of the fabricated corrugated rectangular waveguide by IEEE standard 299, we achieved the shielding effectiveness of more than 30 dB in the practical microwave dryer with the proposed corrugated rectangular waveguide.

Establishment of the Electromagnetic Shielding Effectiveness Measurement System (전자파차폐효과 측정시스템의 구현)

  • 정연춘;강태원;정낙삼
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.3
    • /
    • pp.45-53
    • /
    • 1993
  • The shielding effectiveness of materials is determined by measuring the ratio of the incident electromagnetic power to that which passes through the material under test. The measurement system is constructed using several test fixtures, tracking generator, spectrum analyzer, step attenuator, RF switches, and amplifiers, etc.. The automation of measurements is completed using a personal computer. Especially, incident power, reflected power, and transmitted power are measured with only one spectrum analyzer using a dual directional coupler and RF switches. Therefore the system is to be used in design of shielding materials, as well as shielding effectiveness measurements. This system has dynamic range of more than 120 dB in the frequency range of 10 MHz to 1 GHz, and it can be used to measure shielding effectiveness of composite materials.

  • PDF

Shielding Effectiveness of Electromagnetic Interference in ABS/Nickel Coated Carbon Fiber and Epoxy/Cu-Ni Fabric Nano Carbon Black Composites (ABS/Nickel 코팅 탄소섬유와 Epoxy/Copper-Nickel 직조 섬유 복합재료의 전자파차폐 효과)

  • Han, Gil-Young;Jung, Woo-Chul;Yang, In-Young;Sun, Hyang-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.169-174
    • /
    • 2012
  • Electromagnetic interference(EMI) shielding effectiveness(SE) was investigated in of woven fabric made of epoxy/copper-nickel fabrics and nickel coated carbon fiber reinforced acrylonitrile-butadiene-styrene(ABS) composites. The coaxial transmission line method was used to measure the EMI shielding effectiveness of the composites. We designed and constructed a measuring system, consisting of a network analyzer and a device that plays the serves as a sample holder and at the same time as a transmission medium of the incident electromagnetic wave. The measurement of SE were carried out frequency range from 100MHz to 2GHz. It is observed that the SE of the composits is the frequency dependent increase with the increase in nickel coated carbon fibre volume fraction. The nickel coating with 20wt% ABS composite was shown to exhibit up to 60dB of SE. The result that nickel coated carbon fibre ABS composite can be used for the purpose of EMI shielding as well as for some microwave applications.

Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite (카본블랙/섬유강화 복합재료의 전자파 차폐효과)

  • Kim J.S.;Han G.Y.;Ahn D.G.;Lee S.H.;Kim M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

Evaluation of Electromagnetic Pulse Shielding Effectiveness and Bonding Performance of Inorganic Paint based on Carbon Material (탄소재료 기반 무기계 도료의 전자파 차폐성능 및 부착성능 평가)

  • Jang, Kyong-Pil;Kim, Sang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.801-807
    • /
    • 2021
  • In various industrial fields and infrastructure based on electronic components, such as communication equipment, transportation, computer networks, and military equipment, the need for electromagnetic pulse shielding has increased. Two methods for applying electromagnetic pulse shielding are effective. The first is construction using shielding materials, such as shielding concrete, shielding doors, and shielding windows. The other is coating shielding paints on non-shielding structures. Electromagnetic pulse shielding paints are made using conductive materials, such as carbon nanotubes, graphite, carbon black, and carbon fiber. In this paint, electromagnetic pulse shielding performance is added to the commonly used water-based paint. In this study, the shielding effectiveness and bonding performance of paints using conductive graphite and carbon black as shielding materials were evaluated to develop electromagnetic pulse shielding inorganic paints. The shielding effectiveness and bonding performance were evaluated by applying six mixtures composed of different kinds and amounts of shielding material. The mixture of conductive graphite and carbon black at a weight ratio of 1:0.2 was the most effective in shielding as 33.6 dB. Furthermore, the mixture produced using conductive graphite only showed the highest bonding performance of 1.06 MPa.

The Evaluation of the Characteristics of Electromagnetic Waves on CFRTP for Multimedia Instrument Applications (Multimedia 기기에의 적용을 위한 CFRTP에 대한 전자파 특성의 평가)

  • ;Ri-ichi Murakami
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.3
    • /
    • pp.254-263
    • /
    • 1997
  • As the communication and electronic industry develops, it is important to study the electromagnetic shielding effectiveness (SE) of carbon fiber (CF) reinforced thermal plastics (CFRTP) against the electromagnetic (EM) radiation. In this paper the shielding effectiveness of CFRTP was measured experimentally in an electromagnetic shielding room. The resin ma- terials used were PC, PP, PEI, PMMA and PA. Experiments were carried out by using a copper box and a monopole antenna with a spectrum analyzer. From the experimental results it was found that CF was a good candidate as an electromagnetic shielding material. The sheilding effectiveness was found to be increased in the composite as the number of laminated layers of CF was increased. As the minor damage increased, the SE increased due to increasing of the plane density, transmitting thickness and reflected angle of the CF. Other characteristics of the SE depended on the material used for the resin matrix, distance of the antennas and the noise frequency band.

  • PDF