• Title/Summary/Keyword: Electromagnetic Shielding Effectiveness

Search Result 138, Processing Time 0.021 seconds

Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of MWCNT-reinforced Polypropylene Nanocomposites (다중벽 탄소나노튜브강화 폴리프로필렌 나노복합재료의 전자파 차폐효과 및 기계적 특성)

  • Yim, Yoon-Ji;Seo, Min-Kang;Kim, Hak-Yong;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.494-499
    • /
    • 2012
  • In this work, the effect of multi-walled carbon nanotube (MWCNT) on electromagnetic interference shielding effectiveness (EMI SE) and mechanical properties of MWCNT-reinforced polypropylene (PP) nanocomposites were investigated with varying MWCNT content from 1 to 10 wt%. Electric resistance was tested using a 4-point-probe electric resistivity tester. The EMI SE of the nanocomposites was evaluated by means of the reflection and adsorption methods. The mechanical properties of the nanocomposites were studied through the critical stress intensity factor ($K_{IC}$) measurement. The morphologies were observed by scanning electron microscopy (SEM). From the results, it was found that the EMI SE was enhanced with increasing MWCNT content, which played a key factor to determine the EMI SE. The $K_{IC}$ value was increased with increasing MWCNT content, whereas the value decreased above 5 wt% MWCNT content. This was probably considered that the MWCNT entangled with each other in PP due to an excess of MWCNT.

Electromagnetic Pulse Coupling into Naval Warship and Protective Measures (해군 함정에서의 EMP 영향 및 대책)

  • Yang, Jin-Ho;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.426-433
    • /
    • 2014
  • The high-altitude electromagnetic pulse(HEMP) generated by a high-altitude nuclear explosion. This paper presents the comparison of electric field penetration in Bell laboratories and IEC 61000-2-9 standard when HEMP source penetrates through Naval Warship conducted coupling path and radiated coupling path. Also we analyze the effects of two kinds of coupling and propose Protective measures. Simulation results confirm IEC 61000-2-9 standard is more strict than the Bell Laboratories standard except for a lower frequency band, so we proposed IEC 61000-2-9 standard as a Naval HEMP standard. Finally, we offer the protective measures such as the shielding coating, Honeycomb ventilation, TVS in order to meet the military criteria.

Electromagnetic Modeling of Shielding Effectiveness of Reinforced Concrete Walls (철근 콘크리트에 의한 전자기파 차폐 효과 모델링)

  • Hyun, Se-Young;Lee, Kyung-Won;Kim, Min-Suk;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.384-391
    • /
    • 2012
  • In this paper, reinforced concrete structures are modeled and analyzed. Reinforced concrete has been an essential element in the construction and one that is provided for shielding effectiveness at particular frequencies by rebar placed as a set up in the form of a grid. Using commercial 3-dimensional electromagnetic(3D EM) tool to analyze the reinforced concrete structure, the procedure of analysis for reinforced concrete is computed by dividing concrete, rebar and entire reinforced concrete. The spacing of rebar is bigger, transmission coefficient is higher and the diameter of rebar is bigger, transmission coefficient is lower. Also, in case of two layers is analyzed by gap of layers. Using single layer rebar that thickness of rebar given by 10, 20 and 30 mm have transmission coefficient of -1.89, -2.73 and -4.76 dB/10 cm at 500 MHz. Also, two layers rebar obtain -1.89, -2.73 and -4.76 dB/10 cm for same conditions.

Comparison of SE Evaluation Methods for HEMP Shelters (HEMP 방호시설의 SE 평가방법의 비교)

  • Chung, Yeon-Choon;Lee, Jongkyung;Kwun, Suk-Tai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1197-1200
    • /
    • 2014
  • Two test standards to be applied for evaluating shielding effectiveness of HEMP protection facilities, MIL-STD-188-125-1 and IEEE std. 299, provide different test results in spite of the same facility. In particular, at the frequency range of 10 kHz~20 MHz, it is confirmed that the test results by the IEEE Std. 299 are about 20~30 dB lower than the evaluated results by MIL-STD-188-125-1. These results are due to the different measurement conditions specified in the two test standards. Therefore, IEEE Std. 299 can be applied for the shortening of test distance, but the required SE performance based on MIL-STD-188-125-1 must be modified.

Electromagnetic interference shielding effectiveness and mechanical properties using metal powder/carbon fiber and epoxy-matrix composites (메탈 파우더/탄소 섬유강화 복합재료의 전자파 치폐 효과와 기계적성질)

  • HAN GIL-YOUNG;AHN DONG-GU;KIM JIN-SEOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.376-379
    • /
    • 2004
  • The aim of this study is to prepare mixed Ni/Mg/Al/Cu/Ti powder in epoxy matrix with carbon fiber (NCF, MCF, ACF, CCF, TCF) conductive composite possessing eletromagnetic interference(EMI) shilding effectiveness(SE). A series if NCF/MCF/ACF/CCF/TCF composite were prepared by the hand lay up method. The various compositions of NCF/MCF/ACF/CCF/TCF were 10, 25, 50 percent by weight. The best EMI shilding effectiveness of all NCF/MCF/ACF is doout 40dB.

  • PDF

Novel Mesh Regeneration Method Using the Structural Deformation Analysis for 3D Shape Optimization of Electromagnetic Device (전자소자의 3차원 형상최적화를 위한 구조변형 해석을 이용한 새로운 요소망 변형법)

  • Yao Yingying;Jae Seop Ryu;Chang Seop Koh;Dexin Xie
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.247-253
    • /
    • 2003
  • A novel finite element mesh regeneration method is presented for 3D shape optimization of electromagnetic devices. The method has its theoretical basis in the structural deformation of an elastic body. When the shape of the electromagnetic devices changes during the optimization process, a proper 3D finite element mesh can be easily obtained using the method from the initial mesh. For real engineering problems, the method guarantees a smooth shape with proper mesh quality, and maintains the same mesh topology as the initial mesh. Application of the optimum design of an electromagnetic shielding plate shows the effectiveness of the presented method.

A Conductive-grid based EMI Shielding Composite Film with a High Heat Dissipation Characteristic (전도성 그리드를 활용한 전자파 흡수차폐/방열 복합소재 필름)

  • Park, Byeongjin;Ryu, Seung Han;Kwon, Suk Jin;Kim, Suryeon;Lee, Sang Bok
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.175-181
    • /
    • 2022
  • Due to the increasing number of wireless communication devices in mmWave frequency bands, there is a high demand for electromagnetic interference (EMI) shielding and heat dissipating materials to avoid device malfunctions. This paper proposes an EMI shielding composite film with a high heat dissipation characteristic. To achieve this, a conductive grid is integrated with a polymer-based composite layer including magnetic and heat dissipating filler materials. A high shielding effectiveness (>40 dB), low reflection shielding effectiveness (<3 dB), high thermal conductivity (>10 W/m·K), thin thickness (<500 ㎛) are simultaneously achieved with a tailored design of composite layer compositions and grid geometries in 5G communication band of 26.5 GHz.

Study on Wideband Shielding Effects of Simple Building Structures Using FDTD Method (FDTD 방법을 이용한 간단한 건물 구조의 광대역 차폐 효과에 관한 연구)

  • Cho, Jeahoon;Ha, Sang-Gyu;Park, Sungmin;Chu, Kwanguk;Ju, Saehoon;Kim, Hyeongdong;Jung, Kyung-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.748-751
    • /
    • 2013
  • We perform a wideband radiated pulse coupling analysis of simple building structures using the finite-deference time-domain(FDTD) method. Toward this purpose, the building structures composed of concrete and window materials are assumed and we numerically model the electrical properties of each material. In this work, we apply a dispersive FDTD algorithm for the electromagnetic analysis of building structures and investigate their shielding effectiveness in the frequency range of 50 MHz to 1 GHz.