• Title/Summary/Keyword: Electromagnetic Scattering Analysis

Search Result 165, Processing Time 0.027 seconds

On the Study of New Numerical Analysis in the Transient Electromagnetic Wave Scattering (전자파의 과도적 산란 특성에 관한 새로운 수치해석 연구)

  • 이강호;이상회;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 1990
  • In this paper, the transient electromagneti wave scattering at dielectric cylinder is studied by new numerical analysis method. Basic formulation of boundary integral equation (BIE) for numerical method is started weighted residual technique. BIE is made to two simultaneous equation at surface inner and outside point of dielectric cylinder in extended boundary condition (EBC) and surface boundary condition (SBC). Numerical method is used Boundary element method (BEM) that is two form, one is direct method and the other is indirect method, so that this method that transformes operator inversion martics is used numerical analysis. A good agreement of this numerical solution and the other results is obtained.

  • PDF

Analysis of Electromagnetic Scattering by a Perfectly Conducting Strip Grating on Dielectric Multilayers (다층 유전체 위의 조기적인 도체 스트립 구조에 의한 전자파산란 해석)

  • 윤의중;양승인
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.161-172
    • /
    • 1997
  • In this paper, electromagnetic scattering by a perfectly conducting strip grating on dielectric multilayers is analyzed for the normalized reflected and transmitted power by applying the Fourier-Galeakin moment method. The induced current density is expanded in a series of multiplication of chebyshev polynomials of the first kind and functions with appropriate edge boundary condition, the continuous condition of electromagnetic field is applied in the boundary planes. The confirm the validity of the proposed method, the nor- malized reflected and transmitted power obtained by varying the relative permittivity and thickness of each dielectric layers are evaluated and compared with those of the existing numerical method and a paper, and then the numerical results in this paper are in good agreement with those of the existing numerical method and the paper. The sharp variation position in the geometrically normalized reflected and transmitted power can be moved by the incident angle, grating period, and the relative permittivity and thickness of the dielectric multilayers, these sharp variation points which are called the Wood's anomaly of the Geome- trically normalized reflected power are observed as a main factor when the reflected powers of the higher order mode are transitted between propagating and evanescent modes, and the local minimum positions are slightly moved to the left hand direction in which grating period is getting small according to the increase of the relative permittivity of dielectric layers.

  • PDF

Comparison of Scattering Characteristics between Cylindrical Infinite and Finite Periodic Structure (원통형 무한 배열 구조와 원통형 유한 배열 구조의 전파 특성 비교)

  • Jeong, Yi-Ru;Hong, Ic-Pyo;Lee, Kyung-Won;Kok, Chan-Ho;Kim, Dae-Whan;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.196-203
    • /
    • 2015
  • In order to apply cylindrical periodic array to phased array antenna or frequency selective surface, efficient electromagnetic analysis is required. Finite periodic array is applied in real situation. But, generally, assumed that periodic structure is arranged infinitely, approximate electromagnetic characteristics can be obtained efficiently. But, difference of characteristics between real structure and approximate structure occurs because finite periodic array is approximated to infinite periodic array. Therefore, comparison and analysis of cylindrical infinite array and finite array are required. In this paper, cylindrical infinite periodic array are analyzed using cylindrical Floquet harmonics. Also, cylindrical finite periodic array is analyzed using method of moments (MoM) with thin wire approximation because periodic structures which are composed of strip with narrow width are analyzed. Transmission characteristics and surface currents of infinite and finite periodic structures are compared.

Design of Mode Transducer between $TE_{10}$ Mode in Rectangular Waveguide and $TE_{11}$ Mode in Circular Waveguide (구형 도파관 $TE_{10}$모드와 원형 도파관 $TE_{11}$모드간의 모드변환기 설계)

  • Doo-Yeong Yang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.3
    • /
    • pp.246-253
    • /
    • 1996
  • In this paper, a problem that occurred in the telegraphist equation established by mode conversion method is solved as analysis tapered transmission line is applied to a waveguide taper. After comparing and analyzing the taper function with variant properties, we select on of taper functions not only that is easily designed but also that have good properties. And then we propose the applicant method to design the waveguide taper and deal with the design of mode transducer between rectangular waveguide and circular waveguide. The measured results of scattering coefficients for the mode transducer fabricated with designed data are agreed well with the theoretical results and the validity of the proposed design and analysis method has been confirmed.

  • PDF

Internal Resistive Source Modeling Technique for the Efficient Analysis of Planar Microwave Circuits Using FDTD (FDTD를 이용한 평판 구조 마이크로파 회로의 효율적인 해석을 위한 내부 저항 소스 모델링 방법)

  • 지정근;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.227-236
    • /
    • 1999
  • The finite difference time domain method (FDTD) is widely applied to the analysis of various microwave circuits. However, previous source modeling techniques have a lot of constraints and difficulties to apply for general geometries. Therefore, the internal resistive source modeling technique is suggested for efficiently analyzing various types of microwave circuit in this paper. Its efficiency is proved by comparing the computation time with that of hard source modeling. Accuracy is also verified by comparing the scattering parameters with those of previous source modeling methods and measurements for several microwave circuits.

  • PDF

A Multiresolution Wavelet Scattering Analysis of Microstrip Patch antennas (마이크로스트립 패치 안테나의 다중 분해능 웨이블릿 산란해석법)

  • 강병용;주세훈;빈영부;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.640-647
    • /
    • 1998
  • Microstrip patch antennas are analyzed by a multiresolution wavelet method. The spectral Green's dyad of the structure is obtained and its joint spatial-spectral domain representations are presented. Based on the joint spatial-spectral domain representation, we show that the spectral-domain wavelets are useful in the analysis of this problem. We obtain the matrix equations of the integral equations of this Green's dyad by using the method of moment(MoM), and efficiently solve the problem using the spectral domain wavelet transform concepts in conjuction with the conjugate gradient method. The results for a single-layered square patch are compared with those of conventional MoM and CG-FFT.

  • PDF

Analysis and Fabrication of Waveguide E-Plane Metal Insert Bandpass Filter for Milli-meter Waves (밀리미터파를 위한 도파관 E-면 금속삽입 대역통과 여파기의 설계 및 제작에 관한 연구)

  • 이용민;박종화;최진일;전형준;나극환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.1
    • /
    • pp.108-114
    • /
    • 1998
  • This paper presents the design and fabrication of waveguide E-plane metal insert bandpass filter for milli-meter waves which is analyzed transmission characteristics by calculating the generalized scattering matrix using mode-matching method. The bandpass filter was fabricated to verify the proposed method by the WR-34 rectangular waveguide to operate in 30.085 ~ 30.885 GHz. The fabricated waveguide E-plane metal insert band- pass filter was established the fact that it is so adaptive for milli-meter waves due to the measured data closely consistent with the results of analysis using mode-matching method, that is, the maximum value of insertion loss is 0.8 dB and the return loss is below -15 dB.

  • PDF

Two Dimensional Explicit ID(Isotropic-Dispersion)-FDTD Scheme for Lossy Media (손실 매질에 대한 2차원 등방 시간 영역 유한 차분법)

  • Koh, Il-Suek;Kim, Hyun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.664-673
    • /
    • 2007
  • In this paper, the ID-FDTD scheme, proposed in Reference [1] and [2], is modified and completely analyzed. The modifications are composed of three parts: rigorous stability analysis, dispersion relation for linear lossy media, and new scaling factors for permittivity, permeability, and conductivity. As a result, it is shown that the proposed scheme has lower dispersion error in spite of larger time step than the conventional standard scheme of Reference [3]. To validate the scheme, there are presented two scattering examples, which show excellent results.

Analysis of TE Scattering by a Conductive Strip Grating Between a Double Dielectric Layer (2중 유전체층 사이의 완전도체띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.47-52
    • /
    • 2019
  • In this paper, TE(transverse electric) scattering problems by a conductive strip grating between a double dielectric layer are analyzed by applying the FGMM(Fourier-Galerkin moment method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, and the conductive boundary condition is applied to analysis of the conductive strip. The numerical results for the normalized reflected and transmitted power are analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of the double dielectric layers, and incident angles. Generally, as the value of the dielectric constant increases, the reflected power increases and the transmitted power decreases, respectively. As the dielectric constant increases, the current density induced in the strip increases as it goes to both strip ends. The numerical results for the presented structure of this paper are shown in good agreement compared to those of the existing papers.

Edge-Effect Reduction Technique to Compute the Backscattering from Randomly Rough Conducting Surfaces (거친 도체 표면 후방 산란 계산을 위한 모서리 효과 저감 기법)

  • Hwang, Ji-Hwan;Kweon, Soon-Koo;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.585-591
    • /
    • 2014
  • An improved numerical scattering model with the 2-dimensional moment method including roof-top basis and a modified window-function to reduce edge-effect is presented in this study. The roof-top basis function is used to depict randomly positioned surface currents and increase an efficiency of the moment method. To reduce the edge-effect which occurs at the end of numerically generated surfaces, an enhanced window-function which is weighted by incident angle variable is proposed. To validate an proposed 2-dimensional scattering model and numerical analysis techniques for randomly rough surfaces, computational results are compared and analyzed to SPM(Small Perturbation Model) as well.