• Title/Summary/Keyword: Electromagnetic Model

Search Result 1,224, Processing Time 0.021 seconds

THE ELECTROMAGNETIC CHARACTERISTICS OF THE POLAR IONOSPHERE DURING A MODERATELY DISTURBED PERIOD (지자기교란시 극전리층의 전자기적인 특성)

  • 안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.216-233
    • /
    • 1995
  • The distributions of the ionospheric conductivities, electric potential, ionospheric currents, field-aligned currents, Joule heating rate, and particle energy input rate by auroral electrons along with the characteristics of auroral particle spectrum are examined during moderately disturbed period by using the computer code developed by Kamide et al. (1981) and the ionospheric conductivity model developed by Ahn et al. (1995). Since the ground magnetic disturbance data are obtained from a single meridian chain of magnetometers (Alaska meridian chain) for an extended period of time (March 9 - April 27, 1978), they are expected to present the average picture of the electrodynamics over the entire polar ionosphere. A number of global features noted in this study are as follows: (1) The electric potential distribution is characterized by the so-called two cell convection pattern with the positive potential cell in the morning sector extending into the evening sector. (2) The auroral electrojet system is well developed during this time period with the signatures of DP-1 and DP-2 current systems being clearly discernable. It is also noted that the electric field seems to play a more important role than the ionospheric conductivity the conductivity over the poleward half of the westward electrojet in the morning sector while the conductivity enhancement seems to be more important over its equatorward half. (3) The global field-aligned current distribution pattern is quite comparable with the statistical result obtained by Iijima and Potemra (1976). However, the current density of Region 1 is much higher than that of Region 2 current at pointed out by pervious studies (e.g.; Kamide 1988). (4) The Joule heating occurs over a couple of island-like areas, one along the poleward side of the westward electrojet region in the afternoon sector. (5) The maximum average energy of precipitating electrons is found to be in the morning sector (07∼08 MLT) while the maximum energy flux is registered in the postmidnight sector (02 MLT). Thus auroral brightening and enhancement of ionospheric conductivity during disturbed period seem to be more closely associated with enhancement of particle flux rather than hardening of particle energy.

  • PDF

Effects of Head-Down Tilt$(-6^{\circ})$ on Hemodynamics and Plasma Catecholamine Levels (도립$(-6^{\circ})$이 혈장 Catecholamine 및 심장혈관계에 미치는 영향)

  • Song, Dae-Kyu;Bae, Jae-Hoon;Park, Won-Kyun;Chae, E-Up
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.211-223
    • /
    • 1987
  • Head-down tilt (HDT) at $-6^{\circ}$ has been commonly used as the experimental model in both man and animals to induce the blood shift toward the head or central protion of the body, demonstrating similar physiological effect encountered in the weightlessness in the orbital flight. There are few reports about the physiological response upon the cardiovascular regulatory system or the tolerance to the $(-6^{\circ})$ HDT within a relatively short period less than 1 hour. Therefore, the purpose of this study way to observe the effects of $-6^{\circ}$ HDT on cardiovascular system within 30 minutes and to evaluate early regulatory mechanism for simulated hypogravity. Ten mongrel dogs weighing 8-12 kg were anesthetized with the infusion of 1% ${\alpha}-chloralose$ (100 mg/kg) intravenously, and the postural changes were performed from the supine to the $-6^{\circ}$ head-down Position, then from the head-down to the supine (SUP), and each posture was maintained for 30 minutes. Blood flow $({\dot{Q}})$ through common carotid and femoral arteries were determined by the electromagnetic flowmeter. Mean arterial pressure (MAP), heart rate (HR), respiratory rate , and pH, $P_{O_2}$, $P_{CO_2}$ and hematocrit (Hct) of arterial and venous blood were also measured. The peripheral vascular resistance was calculated by dividing respective MAP values by ${\dot{Q}}$ through both sides of common carotid or femoral arteries. The concentration of plasma epinephrine and norepinephrine was determined by Peuler & Johnson's radioenzymatic method. The results are summarized as follows: In the initial 5 minutes in $-6^{\circ}$ HDT, HR was significantly (p<0.05) increased and MAP slightly decreased. Although ${\dot{Q}}$ and carotid peripheral artery resistance were not significantly changed, ${\dot{Q}}$ through femoral artery was diminished and femoral peripheral artery resistance was elevated. In the SUP, the initial changes of MAP and HR were increased (p<0.05), but those of ${\dot{Q}}$ and peripheral vascular resistance through both common carotid and femoral arteries were not significant. After 10 minutes of each postural change in both HDT and SUP, MAP was maintained almost equal to that of the level of pretilting control. During 60 minutes of both postural changes of HDT and SUP, $P_{O_2}$ and Hct were not changed significantly. However pH tended to increase slowly and $P_{CO_2}$ was gradually decreased. The pH and $P_{CO_2}$ seemed to be related to the increased respiratory rate. Plasma epinephrine concentration was not changed significantly and plasma norepinephrine concentration was slightly decreased in the course of HDT and also at 10 minutes of SUP. However these concentration changes were statistically insignificant. From these results, it may be concluded that the effect of $-6^{\circ}$ HDT for 30 minutes on the cardiovascular system and plasma catecholamine levels of the dog is minimum and it is suggestive that the cardiovascular regulatory mechanism, possibly mediated by so called gravity receptors including baroreceptor and volume receptor, has been properly and adequately operated.

  • PDF

Temperature Compensation of Optical FBG Sensors Embedded Tendon for Long-term Monitoring of Tension Force of Ground Anchor (광섬유 센서 내장형 텐던을 이용한 그라운드 앵커의 장기 장력모니터링을 위한 온도보상)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.13-25
    • /
    • 2012
  • Ground anchor method is one of the most popular reinforcing technology for slope in Korea. For the health monitoring of slope which is reinforced by permanent anchor for a long period, monitoring of the tension force of ground anchor is very important. However, since electromechanical sensors such as strain gauge and V/W type load cell are also subject to long-term risk as well as suffering from noise during long distance transmission and immunity to electromagnetic interference (EMI), optical FBG sensors embedded tendon was developed to measure strain of 7-wire strand by embedding FBG sensor into the center king cable of 7-wire strand. This FBG sensors embedded tendon has been successfully applied to measuring the short-term anchor force. But to adopt this tendon to long-term monitoring, temperature compensation of the FBG sensors embedded tendon should be done. In this paper, we described how to compensate the effect in compliance with the change of underground temperature during long-term tension force monitoring of ground anchors by using optical fiber sensors (FBG: Fiber Bragg Grating). The model test was carried out to determine the temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon. The determined temperature sensitivity coefficient ${\beta}^{\prime}=2.0{\times}10^{-5}/^{\circ}C$ was verified by comparing the ground temperatures predicted from the proposed sensor using ${\beta}^{\prime}$ with ground temperatures measured from ground thermometer. Finally, temperature compensations were carried out based on ${\beta}^{\prime}$ value and ground temperature measurement from KMA for the tension force monitoring results of tension type and compression type anchors, which had been installed more than 1 year before at the test site. Temperature compensated tension forces are compared with those measured from conventional load cell during the same measuring time. Test results show that determined temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon is valid and proposed temperature compensation method is also appropriate from the fact that the temperature compensated tension forces are not dependent on the change of ground temperature and are consistent with the tension forces measured from the conventional load cell.

Analysis of source localization of P300 in college students with schizotypal traits (조현형 인격 성향을 가진 대학생의 P300 국소화 분석)

  • Jang, Kyoung-Mi;Kim, Bo-Mi;Na, Eun-Chan;An, Eun-Ji;Kim, Myung-Sun
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.1
    • /
    • pp.1-26
    • /
    • 2017
  • This study investigated the cortical generators of P300 in college students with schizotypal traits by using an auditory oddball paradigm, event-related potentials (ERPs) and standardized low resolution brain electromagnetic tomography (sLORETA) model. We also investigated the relationship between the current density of P300 and the clinical symptoms of schizophrenia. Based on the scores of Schizotypal Personality Questionnaire(SPQ), schizotypal trait (n=37) and control (n=42) groups were selected. For the measurement of P300, an auditory oddball paradigm, in which frequent standard tones (1000Hz) and rare target tones (1500Hz) were presented randomly, was used. Participants were required to count the number of the target tones during the task and report this at the end of the experiment. The two groups did not differ significantly in the accuracy of the oddball task. The schizotypal trait group showed significantly smaller P300 amplitudes than control group. In terms of source localization, both groups showed the P300 current density over bilateral frontal, parietal, temporal and occipital lobes. However, the schizotypal trait group showed significantly reduced activations in the left superior temporal gyrus and the right middle temporal gyrus, but increased activations in both left inferior frontal gyrus and right superior frontal gyrus compared to the control group. Furthermore, a negative correlation between the current density of the right superior frontal gyrus and SPQ disorganization score was found in the schizotypal trait group. These findings indicate that the individuals with schizotypal traits have dysfunctions of frontal and temporal areas, which are known to be the source of P300, as observed in patients with schizophrenia. In addition, the present results indicate that the disorganization score, rather than total score, of the SPQ is useful in predicting the risk of future schizophrenia.