• 제목/요약/키워드: Electromagnetic Linear Actuator

검색결과 40건 처리시간 0.011초

Design and Analysis of Electromagnetic Tubular Linear Actuator for Higher Performance of Active Accelerate Pedal

  • Lee, Jae-Yong;Kim, Jin-Ho;Lee, Jeh-Won
    • Journal of Magnetics
    • /
    • 제14권4호
    • /
    • pp.175-180
    • /
    • 2009
  • This paper describes the design and analysis of a tubular linear actuator for intelligent AAP (Active Accelerate Pedal) system. In a driving emergency, the electromagnetic actuator produces an additional pedal force such as the active pedal force and vibration force to release the driver's foot on accelerator pedal. A prior study found that the linear actuator with a ferromagnetic core had a problem in transferring the additional force naturally to a driver due to the cogging force. To reduce the cogging force and obtain higher performance of the AAP system, a coreless tubular linear actuator is suggested. Electromagnetic finite element analysis is executed to analyze and design the coreless tubular actuator, and dynamic analysis is performed to characterize the dynamic performance of the AAP system with the suggested tubular actuator for two types of thrust force.

리니어 펌프 구동용 하이브리드 전자기 리니어 엑츄에이터 해석 및 설계 (Analysis and Design of Hybrid Electromagnetic Linear Actuator for Linear Pump)

  • 이정훈;김진호;이재용;정상현;한방우
    • 한국자기학회지
    • /
    • 제20권1호
    • /
    • pp.28-33
    • /
    • 2010
  • 리니어 펌프 구동용 하이브리드 전자기 리니어 엑츄에이터를 해석하고 설계하였다. 솔레노이드 엑츄에이터는 기계적인 에너지 변환장치가 필요하지 않기 때문에 공간을 많이 차지하지 않는 이점으로 인해 널리 사용되고 있다. 또한 에너지 손실이 매우 낮고 소음이 발생하지 않는 장점을 가지고 있다. 하지만, 솔레노이드 엑츄에이터는 전력소비가 크다는 단점을 가지고 있다. 이런 단점을 보완하여 전력소비를 줄이기 위하여 영구자석을 활용한 새로운 하이브리드 전자기 리니어 엑츄에이터를 제안하고 향상된 성능을 검증하기 위해 동적 유한요소 분석을 통해 시뮬레이션을 수행하였다.

Modeling and Analysis of a Novel Two-Axis Rotary Electromagnetic Actuator for Fast Steering Mirror

  • Long, Yongjun;Wang, Chunlei;Dai, Xin;Wei, Xiaohui;Wang, Shigang
    • Journal of Magnetics
    • /
    • 제19권2호
    • /
    • pp.130-139
    • /
    • 2014
  • This paper focuses on the modeling and analysis a novel two-axis rotary normal-stress electromagnetic actuator with compact structure for fast steering mirror (FSM). The actuator has high force density similar to a solenoid, but its torque output is nearly a linear function of both its driving current and rotation angle, showing that the actuator is ideal for FSM. In addition, the actuator is designed with a new cross topology armature and no additional axial force is generated when the actuator works. With flux leakage being involved in the actuator modeling properly, an accurate analytical model of the actuator, which shows the actuator's linear characteristics, is obtained via the commonly used equivalent magnetic circuit method. Finally, numerical simulation is presented to validate the analytical actuator model. It is shown that the analytical results are in a good agreement with the simulation results.

Design of a Rotary Electromagnetic Actuator with Linear Torque Output for Fast Steering Mirror

  • Long, Yongjun;Mo, Jinqiu;Chen, Xinshu;Liang, Qinghua;Shang, Yaguang;Wang, Shigang
    • Journal of Magnetics
    • /
    • 제20권1호
    • /
    • pp.69-78
    • /
    • 2015
  • This paper focuses on the design of a flux-biased rotary electromagnetic actuator with compact structure for fast steering mirror (FSM). The actuator has high force density and its torque output shows linear dependence on both excitation current and rotation angle. Benefiting from a new electromagnetic topology, no additional axial force is generated and an armature with small moment of inertia is achieved. To improve modeling accuracy, the actuator is modeled with flux leakage taken into account. In order to achieve an FSM with good performance, a design methodology is presented. The methodology aims to achieve a balance between torque output, torque density and required coil magnetomotive force. By using the design methodology, the actuator which will be used to drive our FSM is achieved. The finite element simulation results validate the design results, along with the concept design, magnetic analysis and torque output model.

Optimal Design of Electromagnetic Actuator with Divided Coil Excitation to Increase Clamping Force

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.446-450
    • /
    • 2014
  • This paper performed the optimal design of electromagnetic linear actuator with divided coil excitation. The table of orthogonal array and response surface methodology (RSM) are applied to maximize the clamping force of the electromagnetic linear actuator with colenoid (COL) and multipolar solenoid (MPS) excitation. The analysis results show that the clamping force of the optimal models with COL and MPS excitation are increased by 41% and 54% at the gap of 0mm compared to the initial models, respectively.

전자기 리니어 액츄에이터의 집중매개변수 모델링 및 해석 (Lumped Parameter Modeling and Analysis of Electromagnetic Linear Actuator)

  • 장재환;조성진;김진호
    • 한국기계가공학회지
    • /
    • 제15권5호
    • /
    • pp.18-24
    • /
    • 2016
  • An electromagnetic linear actuator is controlled precisely and securely and is useful in devices that require linear motion. The most commonly used method in the performance verification process for an electromagnetic actuator is finite element analysis that utilizes CAE. However, finite element analysis has the disadvantage that modeling and analysis consume a lot of time. Accordingly, lumped parameter analysis can be an alternative approach to the finite element method because of its computation iteration capability with fair accuracy. In this paper, the lumped parameter model and simulation results are presented. In addition, the results of the lumped parameter analysis are compared with those obtained from finite element analysis for verification.

밸브 구동용 고속 리니어 액추에이터 (A Design of High-Speed Linear Actuator for Valve)

  • 성백주
    • 유공압시스템학회논문집
    • /
    • 제8권1호
    • /
    • pp.1-9
    • /
    • 2011
  • The main design factors which effect on operating speed of linear actuator for valve operation are mass of plunger, electromagnetic motive force, inductance, and return spring, and these factors are not independent but related with each other in view point of design and electromagnetic theory. It is impossible to increase the operating speed by only change the value of any one design factor. The change of any one value results in change of any value related it in various design factors. This paper presents a speed increasing method of linear actuator using a solenoid design method by some governing equations which are composed of electromagnetic theory and empirical knowledge and permanent magnets as assistant material, and proved the propriety by experiments.

등가자기회로를 활용한 콜레노이드 타입 선형 액츄에이터 설계 알고리즘 개발 (Development of the Design Algorithm Using the Equivalent Magnetic Circuit Method for Colenoid Type Electromagnetic Linear Actuator)

  • 한동기;장정환
    • 한국자기학회지
    • /
    • 제26권2호
    • /
    • pp.55-61
    • /
    • 2016
  • 본 논문에서는 설계변수 변화에 따른 특성을 빠른 시간 내에 파악할 수 있는 등가자기회로법(equivalent magnetic circuit method)을 활용하여 콜레노이드(colenoid) 타입의 선형 액츄에이터 설계 알고리즘을 제시하였다. 우선 선형 액츄에이터의 중요치수가 결정되면 등가자기회로법에 의해 슬롯 폭 비율 및 인가전류에 따른 클램핑력으로 파라미터 맵(parameter map)을 완성하고 이를 활용하여 효율적인 슬롯 폭 비율을 결정하였다. 또한 최대 클램핑력(clamping force)을 얻기 위해 극 폭 조절 알고리즘을 수행하여 최적의 극 폭 치수를 선정하였으며 이를 바탕으로 인가전류에 따른 클램핑력을 계산하여 40 kN 이상 출력하기 위한 최적의 극 수, 극 폭 치수 및 인가전류를 결정하였다. 제안된 설계 알고리즘은 최적설계 방법인 반응표면법(response surface method)과 비교하여 제안한 설계 알고리즘의 타당성을 검증하였다.

A Equivalent Finite Element Model of Lamination for Design of Electromagnetic Engine Valve Actuator

  • Kim, Jin-Ho
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.151-155
    • /
    • 2006
  • The electromagnetic engine valve actuator is a key technology to achieve variable valve timing in internal combustion engine and the steel core and clapper of the electromagnetic engine valve actuator are laminated to reduce the eddy current loss. To design and characterize the performance of the electromagnetic engine valve actuator, FE (finite element) analysis is the most effective way, but FE (finite element) 3-D modeling of real lamination needs very fine meshes resulting in countless meshes for modeling and numerous computations. In this paper, the equivalent FE 2-D model of electromagnetic engine valve actuator is introduced and FE analysis is performed using the equivalent FE 2-D model.

Responsibility of Control System of Engine Intake Valve with Linear Electromagnetic Actuator

  • Nakpipat, Tawatchai;Kusaka, Akihiko;Ennoji, Hisayuki;Iijima, Toshio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.291-295
    • /
    • 2004
  • New valve driving system to control for the best volumetric efficiency at each load of an internal combustion engine within one engine cycle has been developed. The system needs to reduce pumping loss that cause by throttle valve during the intake valve is opened. In this system the intake valve is driven by a linear DC electromagnetic actuator which is controlled by personal computer. The result is compared both installed and uninstalled actuator into the cylinder head. By both of experimental and numerical calculation, the responsibility of the valve driving system to the engine speed was examined

  • PDF