• Title/Summary/Keyword: Electromagnetic Linear Actuator

Search Result 40, Processing Time 0.033 seconds

Design and Analysis of Electromagnetic Tubular Linear Actuator for Higher Performance of Active Accelerate Pedal

  • Lee, Jae-Yong;Kim, Jin-Ho;Lee, Jeh-Won
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.175-180
    • /
    • 2009
  • This paper describes the design and analysis of a tubular linear actuator for intelligent AAP (Active Accelerate Pedal) system. In a driving emergency, the electromagnetic actuator produces an additional pedal force such as the active pedal force and vibration force to release the driver's foot on accelerator pedal. A prior study found that the linear actuator with a ferromagnetic core had a problem in transferring the additional force naturally to a driver due to the cogging force. To reduce the cogging force and obtain higher performance of the AAP system, a coreless tubular linear actuator is suggested. Electromagnetic finite element analysis is executed to analyze and design the coreless tubular actuator, and dynamic analysis is performed to characterize the dynamic performance of the AAP system with the suggested tubular actuator for two types of thrust force.

Analysis and Design of Hybrid Electromagnetic Linear Actuator for Linear Pump (리니어 펌프 구동용 하이브리드 전자기 리니어 엑츄에이터 해석 및 설계)

  • Lee, Jung-Hun;Kim, Jin-Ho;Lee, Jae-Yong;Jeong, Sang-Hyun;Han, Bang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.1
    • /
    • pp.28-33
    • /
    • 2010
  • The purpose of this paper is to analyze and design a new hybrid electromagnetic linear actuator for linear pumps. Solenoid linear actuator is widely used because it occupies small space due to no mechanical energy conversion system. In addition, the energy loss is very low and it has no noise. Conventional solenoid linear actuator, however, has the critical drawback of high power consumption. In this research, we present a new hybrid electromagnetic linear actuator using a permanent magnet in order to reduce power consumption. The enhanced performance of the hybrid linear actuator was verified by dynamic finite element analysis.

Modeling and Analysis of a Novel Two-Axis Rotary Electromagnetic Actuator for Fast Steering Mirror

  • Long, Yongjun;Wang, Chunlei;Dai, Xin;Wei, Xiaohui;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.130-139
    • /
    • 2014
  • This paper focuses on the modeling and analysis a novel two-axis rotary normal-stress electromagnetic actuator with compact structure for fast steering mirror (FSM). The actuator has high force density similar to a solenoid, but its torque output is nearly a linear function of both its driving current and rotation angle, showing that the actuator is ideal for FSM. In addition, the actuator is designed with a new cross topology armature and no additional axial force is generated when the actuator works. With flux leakage being involved in the actuator modeling properly, an accurate analytical model of the actuator, which shows the actuator's linear characteristics, is obtained via the commonly used equivalent magnetic circuit method. Finally, numerical simulation is presented to validate the analytical actuator model. It is shown that the analytical results are in a good agreement with the simulation results.

Design of a Rotary Electromagnetic Actuator with Linear Torque Output for Fast Steering Mirror

  • Long, Yongjun;Mo, Jinqiu;Chen, Xinshu;Liang, Qinghua;Shang, Yaguang;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.69-78
    • /
    • 2015
  • This paper focuses on the design of a flux-biased rotary electromagnetic actuator with compact structure for fast steering mirror (FSM). The actuator has high force density and its torque output shows linear dependence on both excitation current and rotation angle. Benefiting from a new electromagnetic topology, no additional axial force is generated and an armature with small moment of inertia is achieved. To improve modeling accuracy, the actuator is modeled with flux leakage taken into account. In order to achieve an FSM with good performance, a design methodology is presented. The methodology aims to achieve a balance between torque output, torque density and required coil magnetomotive force. By using the design methodology, the actuator which will be used to drive our FSM is achieved. The finite element simulation results validate the design results, along with the concept design, magnetic analysis and torque output model.

Optimal Design of Electromagnetic Actuator with Divided Coil Excitation to Increase Clamping Force

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.446-450
    • /
    • 2014
  • This paper performed the optimal design of electromagnetic linear actuator with divided coil excitation. The table of orthogonal array and response surface methodology (RSM) are applied to maximize the clamping force of the electromagnetic linear actuator with colenoid (COL) and multipolar solenoid (MPS) excitation. The analysis results show that the clamping force of the optimal models with COL and MPS excitation are increased by 41% and 54% at the gap of 0mm compared to the initial models, respectively.

Lumped Parameter Modeling and Analysis of Electromagnetic Linear Actuator (전자기 리니어 액츄에이터의 집중매개변수 모델링 및 해석)

  • Jang, Jae-Hwan;Cho, Seong-Jin;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.18-24
    • /
    • 2016
  • An electromagnetic linear actuator is controlled precisely and securely and is useful in devices that require linear motion. The most commonly used method in the performance verification process for an electromagnetic actuator is finite element analysis that utilizes CAE. However, finite element analysis has the disadvantage that modeling and analysis consume a lot of time. Accordingly, lumped parameter analysis can be an alternative approach to the finite element method because of its computation iteration capability with fair accuracy. In this paper, the lumped parameter model and simulation results are presented. In addition, the results of the lumped parameter analysis are compared with those obtained from finite element analysis for verification.

A Design of High-Speed Linear Actuator for Valve (밸브 구동용 고속 리니어 액추에이터)

  • Sung, B.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • The main design factors which effect on operating speed of linear actuator for valve operation are mass of plunger, electromagnetic motive force, inductance, and return spring, and these factors are not independent but related with each other in view point of design and electromagnetic theory. It is impossible to increase the operating speed by only change the value of any one design factor. The change of any one value results in change of any value related it in various design factors. This paper presents a speed increasing method of linear actuator using a solenoid design method by some governing equations which are composed of electromagnetic theory and empirical knowledge and permanent magnets as assistant material, and proved the propriety by experiments.

Development of the Design Algorithm Using the Equivalent Magnetic Circuit Method for Colenoid Type Electromagnetic Linear Actuator (등가자기회로를 활용한 콜레노이드 타입 선형 액츄에이터 설계 알고리즘 개발)

  • Han, Dong-Ki;Chang, Jung-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.55-61
    • /
    • 2016
  • This study proposes the design algorithm of an electromagnetic linear actuator with a divided coil excitation system, such as the colenoid (COL) system, using the equivalent magnetic circuit (EMC) method. Nowadays, the clamping device is used to hold workpiece in the electrically driven chucking system and is needed to produce a huge clamping force of 40 kN like hydraulic system. The design algorithm for electromagnetic linear actuator can be obtained using the EMC method. At first, the parameter map is used to decide the slot width ratio in the initial design. Next, to make the magnetic flux density uniform at each pole, the pole width is adjusted by the pole width adjusting algorithm with EMC. When the dimensions of the electromagnetic linear actuator are decided, the clamping force is calculated to check the desired clamping force. The design results show that it can be used to hold a workpiece firmly instead of using a hydraulic cylinder in a chucking system.

A Equivalent Finite Element Model of Lamination for Design of Electromagnetic Engine Valve Actuator

  • Kim, Jin-Ho
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.151-155
    • /
    • 2006
  • The electromagnetic engine valve actuator is a key technology to achieve variable valve timing in internal combustion engine and the steel core and clapper of the electromagnetic engine valve actuator are laminated to reduce the eddy current loss. To design and characterize the performance of the electromagnetic engine valve actuator, FE (finite element) analysis is the most effective way, but FE (finite element) 3-D modeling of real lamination needs very fine meshes resulting in countless meshes for modeling and numerous computations. In this paper, the equivalent FE 2-D model of electromagnetic engine valve actuator is introduced and FE analysis is performed using the equivalent FE 2-D model.

Responsibility of Control System of Engine Intake Valve with Linear Electromagnetic Actuator

  • Nakpipat, Tawatchai;Kusaka, Akihiko;Ennoji, Hisayuki;Iijima, Toshio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.291-295
    • /
    • 2004
  • New valve driving system to control for the best volumetric efficiency at each load of an internal combustion engine within one engine cycle has been developed. The system needs to reduce pumping loss that cause by throttle valve during the intake valve is opened. In this system the intake valve is driven by a linear DC electromagnetic actuator which is controlled by personal computer. The result is compared both installed and uninstalled actuator into the cylinder head. By both of experimental and numerical calculation, the responsibility of the valve driving system to the engine speed was examined

  • PDF